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Multidimensional second order equation of the mixed type of the second kind is considered in the paper.
Unique solvability and smoothness of the solution of a nonlocal boundary value problem with constant

coefficients in Sobolev spaces are proved under some conditions on coefficients.
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1. Introduction and formulation of the problem

Let Q = [] (o, i), be n-dimensional parallelepiped in the Euclidean space R™ of points
i=1
(1, 2n), 0 < ; < B; < +o0, Vi=1,n.
In domain @ = Q2 x (0,T) we consider a second order differential equation

Lu= K(x,t) uy — (a;j(z) um)% +a(z,t)us+c(x,t)u= f(x,t). (1)

Here and below repeating indexes mean summation from 1 to n. We assume that all functions
below are real-valued and smooth enough.

Let K (2,0) <0< K (z, T) at € . Then equation (1) is an equation of the mixed type of
the second kind since function K (x,t) can change sign in the domain Q [1-4].

1.1. The nonlocal boundary value problem

We are to find a generalized solution of equation (1) from Sobolev space W 5(Q), (2 < £ is a
natural number) that satisfies nonlocal boundary conditions

ni DY uly,—o, = DY, uly, g, (3)
Fu — )
when p = 0,1, where D? v = 927 D; w=u, v and n;,Vi = 1,n are some constants which are
i ot i

not equal to zero. They will be defined below.
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Nonlocal boundary value problems for the mixed type second order equation both first and
second kinds were considered [2,4-8,12,14,15]. Nonlocal boundary value problems (2), (3) for
the mixed type equation of the first kind were studied for the first time by one of the authors of
the paper [9].

Here equation (1) is considered in the case K(x,0) < 0 < K(z,T). Unique solvability and
smoothness of the generalized solution of one nonlocal boundary value problem with constant
coefficients (2), (3) in Sobolev spaces W4 (Q) (2 < £ € N) are studied for the first time.

Let us assume that a;;(z)= a;i(z); aij(ar)=a;;(Bk), Yk =T,n end Ve R", |€]*= 3 £2.
i=1

Let us also assume that one of the following conditions holds:

(@) a;;&&5 > aol¢|?, where ag is const > 0,

() a;;&€; < a1|£|2, where a; is const < 0.

Further we assume that |n;| > 1, || > 1 in the case of condition (a), || < 1 in the case of
condition (b).

W 5(Q) (2 < l-natural number ) is the Sobolev space with the scalar product (,), and the
norm |[|-||;, W3(Q) = La( Q) is the space of square integrable functions.

Let v = (V¢,Vay, - - ., Vs, ) be a unit vector of an exterior normal to the boundary 0Q, where
vy = cos(v,t), vy, = cos(v,x;), Vi =1,n.

Further, the Young inequality is often used

oPuP 9 1 1

. -+ -=1

Yu,v >0, Vo >0, p>1, u-v< —
p go? p ¢

If p = ¢ = 2 then we come to the Cauchy inequality with o [10].
First, we consider the case [ = 2, that is, u € W3(Q) and assume that coefficients of equation
(1) are smooth enough functions.

2. Uniqueness of the solution of the problem

Theorem 2.1. Let us assume that above mentioned conditions on coefficients of equation (1)

2
are fulfilled and 2a — Ky + AK > 61 > 0, Ac —¢; = do > 0, where A = T1n|v| >0 if || >1in

2
the case of condition (a) and \ = Tln |v] < 0 if |v] <1 in the case of condition (b), |n;| = 1,

Vi=T1,n, c(z,0) < c(z,T). If a generalized solution of problem (1)-(3) from the space W (Q)
exists for any function f € Lo(Q) then the solution is unique and the following inequality holds:

[ully <ml[£llo-

From this point on m is positive constant.

Proof. Let us assume that a generalized solution of problem (1)—(3) exists in the space W 3(Q).
Taking into account conditions of Theorem 1 and the Cauchy inequality with ¢ from problem
(1)=(3), it is easy to obtain the following inequality

Z/Lu.exp(—)\t—zmxi> ~up dx dt >/exp<—)\t—2uixi> {(2a — K; + A\K) - ui+
Q i=1 Q i=1

A U g, + (e —¢) - uPdrdt — o - |uglly — p2o ™t - [Juglg +

n
+ / exp < — At — Zui zi> {Kufyt = 20U UV, + QijUg Ug; Vi + C - u21/t} ds, (4)
9Q i=1
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where 0 < ln Inil, 0 < 0; = (B; —;), o and o~ are coefficients of the Cauchy inequality

with o. Condltlons of Theorem 1 provide non-negativity of the integral over the domain @ and
on the boundary dQ. Because u € W,2(Q) satisfies boundary conditions (2), (3) and 42 = e~ 7,
n? = et % then

n
/ exp(—)\t—z,uixz) {Kufyt = 205Uz, Ut Va; + QijUy, Uy, v + cu? Z/t}ds =
0Q

) i=1
/ exp ( Z 1 .Z‘Z) {[K(z,T) e M2 — K(x,0)] u?(z,0)+
+ [e_’\ty2 — 1]uw (x,0) + [c(a:,T)e_)‘T'y2 —c(z, 0)]u2(m, 0)}dx—

T
— 2[exp(—piBi )n; — exp( —pia;)] / exp(—At) ug, (—au, t)u(ay, t)dt >
0

/a? exp( Z'“Z xz> (2,T)e 42 — K(z,0)]uf(z,0)+
+ [e(z, T)e 42 — ¢(z, 0)]u?(z,0) dx > 0. (5)

Omitting positive boundary integrals, we obtain from (5) the following inequality

Q/Lu-exp(—)\t—Zuixi)-utda:dt > /exp(—/\t—z,uia:i) {(2a — K; + AK) -ul+
Q i=1 Q i

+Aa;ul +(Ae—cp) - Q}dxdt—UHuwl

- 2
—p? o™ ullg, (6)

where a, = ap in the case of condltlon (a), a; = a1 in the case of condition (b). Setting
coefficients Aa; —o > X\ > 0, §; — 1 > §y > 0, we obtain from inequality (6) the first a
priori estimate

lull, < mlfl-

Uniqueness of the generalized solution of problem (1)—(3) in W#(Q) follows from this estimate.
0O

3. The equations of composite type

To prove the existence of the solution of problem (1)—(3) in W(Q) we use the method of
"e-regularisation" together with Galerkin method [1,3,8,13].
Let us consider a nonlocal problem for composite type equation

0
L.u, = *€§Aus + Lu. = f(z,1), (7)
WDgushs:o = D:SIUE‘t:T7 q=0,1,2, (8)
nzD ue‘a; = 51 u5|$i:ﬂi7 p = Oa 1) (9)
0? n 82 or
where Au = ats + Z is the Laplace operator, D? u = a—xg, O, u=mu, p=01,
q
Diu= gu , ¢q=1,2; D%u = u, £ is a small enough positive number, 7;,vy = const # 0, such

ot
that |v] > 1 in the case of condition (a), |7 | < 1 in the case of condition (b), |n;| > 1, Vi = 1, n.
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In what follows we use composite type equation (7) as the e-regularization equation for
equation (1) [1,8].
0Au,.

Let us denote a class of functions such that u.(z,t) € W3(Q) and 5

conditions (8),(9) by W.

€ Ly(Q) satisfying

Definition. Function u.(z,t) € W satisfying equation (7) is denoted the regular solution of
problem (7)—(9).

Theorem 3.1. Let us assume that above mentioned coefficient conditions for equation (1) are

2
fulfilled and 2a — K| + XA 2 61 >0, A c—c¢; = d2 > 0, where)\zfln|7| >0 if |y >1in

2
the case of condition (a) and A\ = Tln |7l < 0 if |[v] < 1 in the case of condition (b), |n;| > 1,

c(z,0) = c(x,T), a(z,0) = a(z,T), a(a;,t) = a(B;,t), K(a;,t) = K(Bs,t), Vi = 1,n. Then for
any function f, fy € La(Q), such that - f(z,0) = f(z,T) there is a unique regular solution of
problem (7)—-(9), and the following inequalities are true:

2 2 2 2
I) &( ”usttHo"' ||u6tx||o)+||uEH1 <me“o»
dAu, ||? 2 > 2
1) e TS| el < m 1702 + 103]
0

Proof. The proof of Theorem 2 is carried out using Galerkin method with special basis functions.
[8,10].

3.1. Proof of the first a priori estimate I)

Consider the following spectral problems. Let ¢;(x,t) be eigenfunction of the following prob-

lem 2 2
Ag; = 3823- - %;ij = —2¢;, (10)
D éjl,_o = D djl,_p » p=0,1, (11)
DE¢jl,—o = DL &l ey (12)

It follows from the general theory of linear self-adjoint elliptic operators that all { ¢;(x,t) } are
eigenfunctions of problem (10)—(12). They form fundamental system in W3(Q), and they are
orthonormal in Ly(Q) [10,11]. Then we construct the solution of an auxiliary problem using

these functions:
-1 n
exp [2 <)\t + Zlulxl>] wjt = @5, (13)

v wi(z,0) = w;(z,T), (14)

where, v = const # 0, such that |v| > 1 in the case of condition (a), |v| < 1 in the case of
2 _

condition (b), 0 < p; = 7 In|n;|, |m| = 1,¥i = 1,n. Obviously, problem (13), (14) is uniquely

1
solvable and its solution has the from

n
> it T
i=1

(lg; =w; =exp <2—2> . l/ot exp (%)@Mﬂ-ﬁ /OT exp (%) qudt] . (15)
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N
It is clear that functions wj(x,t) are linearly independent. Indeed, if )" cjw; = 0 for some
j=1

N
set of functions wi,ws,...,wn then acting on this sum by the operator ¢, we have ) cjlw; =
j=1
N
= > ¢j¢; = 0. Then we obtain that ¢; = 0 for any j = 1, N. It follows from the construction
j=1
of function ¢;(x,t) that functions w;(x,t) satisfy the following conditions

7D} wil,g = Diwilyep, q=0,1,2 (16)

ni Dy, wil,,—, = DY, wil,. 5., p=0,1. (17)
N

We take the approximate solution of (7)-(9) in the from w = u® = 3~ ¢jw; where coefficients
Jj=1

¢; are defined for any j = 1, N as solutions of the linear algebraic system

— (Xt Zl M @) — (Xt Zlm z;)
/ Leul e 2 — ¢;dxdt / fre =  ¢;dxdt. (18)
Q

We prove the unique solvability of algebraic system (18). Multiplying every equation of (18) by
2¢; and summing up with respect to j from 1 to N and taking into account (12), (13), (18), we

—(At+ iTi) —(At+ iT;)
/ Low-e ; S wpdzdt = / f-e ; e - widxdt. (19)
Q Q

Upon integrating identity (19), by virtue of theorem 2 we obtain for the approximate solution of
problem (7)—(9) the estimates I), i.e.

obtain

e(llulbellg + luellg) + (I} < m 1. (20)
This implies the solvability of algebraic system (18). In particular, from estimate (20) we obtain

a weak solution of problem (7)—(9) [3,10].

3.2. Proof of the second a priori estimate II.)

Taking into account problem (10)—(14), from identity (18) we obtain

1 —(xt+ 21 Hi@g) -(x t+i§1uz @)
——2/ Lewe Alw; dxdt = ——/ fe z Alw; dxdt, (21)
Vi Je
where,
—(At+ Zluixi) A2 42
Alw; =eXP[ 5 ](ijt_/\wjtt_lu“j wjm+4]wjt>v Awj = Wiy + Wj g

Multiplying each equation of (21) by 21/]20j and summing up with respect to 7 from 1 to N
and considering (15), (16), (21), we have the following identity

—Ove 3 e —Ovt 8 i)
—2/ Lew - T Alwdxdt = —2/ fre 7 -Alwdxdt. (22)
Q
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Integrating (22) and taking into account conditions of Theorem 2.1 and boundary conditions
(15), (16), we obtain the following inequality

—(Nt+ X pims)

e =1 {(2047\Kt|+)\K)wt2t+

0A
e [0+ 1518 > ¢ | 22

O

—(t Y i)
+ 2a— |K| + AK w3, + Aw? . +Awy,, }dadt —|—/ e = (K w? — 20 ws wip+
0Q

2 2 2
F Wy, 2Wee, Wiy — Wiy + Kwy y + 2cw (Wit + Wayz, )V +

+ (2K Wit Wayt — 2w Wat + 200w Wat) Vi, Jds — 0 ([ waally + waelly)—
2
— 2
— 2o unlly = m (I1£15) = Jin (23)
=1

where, J; is the integral over the domain, J; is the integral over the boundary.

Taking into account conditions of Theorem 2.1 and boundary conditions (14), (15), we obtain
for coefficients A — o > Ag > 0, d; — —1'> 6§y > 0that J; >0 and Jy > 0. Now we have from
inequality (23) the second estlmate

HAU 'l < me [IA15+ 1A0] - (24)

Hence, from the well-known theorem on weak compactness [10] the obtained estimations
(20), (24) allow one to take the limit N — oo and to conclude that a subsequence {ul*}
converges in Lo (Q) together with the first and the second order derivatives to the unique regular
solution u.(z,t) of problem (7)-(9) with the properties specified in Theorem 2.1 [3,6,8,10].

By virtue of (24) the following inequality holds for u.(z,t)

gAuE

2
2 2 2
e+ lluclly <m | IF15+ 175 - (25)
0

Theorem 2.1 is proved. g

4. Existence of solution for the problem

4.1. The method of "e-regularization"
Now by means of the method of "e-regularization" we prove solvability of problem (1)—(3).

Theorem 4.1. Let us assume that all conditions of theorem 2.1 are satisfied. Then the gener-
alized solution of problem (1)(3) in space W2(Q) exists and it is unique

Proof. The uniqueness of the solution of problem (1)—(3) in W2(Q) is proved in Theorem 1.1.
Now we prove existence of the generalized solution of problem (1)—(3) in WZ(Q). For this
purpose, we consider equation (7) in the domain @ with nonlocal boundary conditions (8), (9)
at € > 0. Because all conditions of Theorem 2.1 are fulfilled then there exists unique regular
solution of problem (7)—(9) at € > 0, and estimates I),II) are true for it.

It follows from the well-known theorem on weak compactness [10] that it is possible to take
from the set of functions {u.}, £ > 0 weakly converging sub sequence of functions in W such that
{ue,} = u at e; = 0. Let us show that limit function u(z,t) satisfies the equation Lu = f (1).
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Ue

Indeed, as sequence {u.,} converges weakly in W2(Q), sequence , (¢ > 0) is uniformly

bounded in Lo(Q), and operator L is linear, then we have

0Au,

0Au,
ot '

Lu — f = Lu— Lu,, i
u— f U Ue, +€ 5

=L(u—u)+e-

(26)

Taking the limit &; — 0, we obtain from (26) the unique solution of problem (1)—(3) in W2(Q)
[1,6,8].
Theorem 3.1 is proved. O

5. Smoothness of solution for the problem

Now we prove a more general case [ > 3. Further we assume that coefficients of equation (1)
are infinitely differentiated in the closed domain @ .

Theorem 5.1. Let us assume that conditions of Theorem 3.1 are fulfilled and
2(a+pKy) — | Ky + AK 26 >0,
DK,y = D{'Kl,_p, D"al,_o=Di"al,_p, Dy"cly_q=Di"cl,_q.
Then for any function f(z,t) such that f € WE(Q), D' f € Ly(Q), DI flico =D flir

where m = 0,1,2,3,...,p there exists unique generalized solution of problem (1)-(3) in the space
W 5t(Q),where p = 1,2,3, ... .

Proof. Tt follows from smoothness of the solution of problem (10)—(14) that the approximate
solution of problem (7)—(9) satisfies conditions w = uY € C*°(Q);

/yDgwlt:():Dgw“:Tﬂ q:071727"'1

nngb w‘zizfai - Dg, w|$i:ﬁi’ p= 07 1.

Taking into account conditions of Theorem 2.1 at ¢ > 0, nonlocal conditions at t =0, ¢t =T and
equality

= -at OA —at _
R TR

we obtain
1Y - te et (2,0) — e e (2, T)||, < const.

Hence, function v.(z,t) = u. ¢(z,t) belongs to W and satisfies the following equation
Pove=Leve = fy —ay ey — cue = Fr. (27)

It follows from theorem 2.1 that the set of functions {F.} is uniformly bounded in the space
L2 (Q)7 i.e.
2 2
IFello <m [ 105+ 1£0E] -
Further, it can be easily obtained from conditions of Theorem 3.1 that coefficients of the operators

P. (e > 0) satisty conditions of Theorem 4.1. Then on the basis of estimates I), IT) for function
{v:} we obtain similar estimates

2 2 2 2 2
e (llveeelly + lveeally) + llvelly < m (111l + I1£ellg) (28)
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dAv, || 2 2 2
25| el < m [+ el (29)
0
Function {u.} satisfies parabolic equation with conditions (2), (3)
" O0Au,
Mue = uey — Z (aijusxi)xj =f+te T K(z,t)uerr — (a — Dugy — cue = D, (30)
ij=1

here ®. € L2(Q). Set of functions {®.} is uniformly bounded in WZ(Q), i.e.

@5 <m [IF1F + 11 £uells] <ol 15 - (31)

On the basis of a priory estimates for parabolic equations [1], [10] and inequality (31) we obtain

2 2
[uellz <m £l -

Further, one can prove in a similar way that ||u[:.||12)_~_2 <m ||f|\12)_~_1 , where p=2,3,.... O
Remark. In the formulation of problem (1)—(3) the sign at the quadratic form does not play
an essential role. However, in the case

(a) ai;(x)&&; > a0|§|2; a;j = aj;, where ag = const >0,z € Q, £ € R”
the class of equations (1) includes parabolic equations and in the case

(b) ai;(x)&&; < a1l 2 a;j = aj;, where a; = const <0, z €
the class of equations (1) includes inverse parabolic equations. Nevertheless, similar results are

obtained only with the change in the value of 4 for problem (1)—(3) in the case of conditions (a)
and (b).

Therefore, the following question arises: whether or not restrictions on - are essential? In
this connection we consider the following examples.

Examples. In the rectangle @ = (0,¢) x (0, T') we consider the following problem

IMiu=u; —uy, =0, (32)
vyu(z,0) =u(zx,T), (33)
u(0,t) = u(f,t) = 0. (34)

2k
Solving problem (32)—(34) by the Fourier method, we find v, = exp(—M\T) < 1, A\ = il

k=0,1,2,.... It is easy to verify that all conditions of Theorem 1 are fulfilled but functions
uy, = Cre~ Mt sin A\ (where Cj, are arbitrary constants) are nontrivial solutions of this boundary
value problem.

)

In the same way, we consider the following problem

Ihu=wu; +uge =0, (35)
yu(z,0) =u(z,T), (36)
u(0,t) = u(f,t) = 0. (37)

Solving problem (35)—(37) by the Fourier method, we find that functions u; = Cre*** sin Az with
any C}, are nontrivial solutions of this boundary value problem. In this case v, = exp(A,T) > 1.
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Hence, we see that restrictions on « for both conditions (a) and (b) are essential. If these

conditions are not satisfied then we do not have the uniqueness of the problem as shown above.

The author would like to thank prof. R. Ashurov and reviewer for useful comments and

suggestions.
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O6 oaHOIT HeJIOKAJIbHOII KpaeBoil 3aJiade C MOCTOSHHBIM

KO3 PUIMeHTOM AJIsI MHOTOMEPHOTO YyPaBHEHUS CMEITaHHOTO
TUIa BTOPOT'O Pojia, BTOPOT'O0 HOPSIKA

Cupoxugaun 3. IxamamoB
MNucTuTyT MaTeMaTHKH

Axkanemnsa Hayk Pecrybiuku Y3beknucran
M. Vnyr6eka, Tamkent, 100170
Y3bekucran

B danmotli pabome npu 6vinOAHEHUU HEKOMOPHIT YCA0BUT HA KOIPPHUUUEHNDL MHO2OMEPHOZ0 YPABHEHUS
CMEWAHH020 MUNG 8TNOP020 POJa 8 NPOCPAHCMEE JOKA3VEAIOMCA 00HO3HAYHAA PA3PEWUMOCTD U 2400~

KOCMb pPeweHus, 00HOT HeAOKAAbHOT Kpae6oT 3a0a U ¢ NOCNOAHHBIM KOIPHUUUEHOM 6 NPOCTPAHCMEAT
C.JI.Coboaesa.

Karouesvie cro6a: mHo2omepHvle YpasHEHUA, PA3PEWUMOCTIL, 0000WeEHHOE PeuleHUe.
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