Journal of Siberian Federal University. Mathematics & Physics 2024, 17(3), 295-303

EDN: GHKMHE
VIIK 517.9

Some Properties of the Automorphisms of the Classical
Domain of the First Type in the Space C[m x n]

Gulmirza Kh. Khudayberganov*

National University of Uzbekistan named after Mirzo Ulugbek
Tashkent, Uzbekistan

Kutlimurot S. Erkinboev'

Urgench State University

Urgench, Uzbekistan

Received 29.09.2023, received in revised form 03.10.2023, accepted 09.01.2024

Abstract. In this article we obtain an analogue of Theorem 2.2.2 from Rudin’s book [6] for classical
Cartan domains of the first type.
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It is well known that thanks to Riemann’s uniformization theorem an arbitrary simply con-
nected domain whose boundary with more than one point is biholomorphically equivalent to a
unit circle U = {z € C: |z| < 1}. But in C*(n > 1) such a property does not hold. For ex-
ample, a ball and a polidisk are not mutually biholomorphic equivalent. Therefore, the class of
biholomorphic domains in the space C™ is very important.

Definition 1 (Homogeneous Domain). A domain D C C" is called homogeneous if the group
Aut (D) of automorphisms of this domain is transitive, i.e. for any pair of points z1,ze € D
there exists an automorphism ¢ € Aut (D) such that ¢ (z1) = zo.

Definition 2 (Symmetric Domain). A homogeneous domain D C C™ is called symmetric if for
any point ¢ € D there exists an automorphism ¢ € Aut (D)such that:

@ (<) =¢ but p(2) # z for 2 #;

p o =e, where e € Aut (D) is the identity map.

Definition 3. A domain D C C" is called irreducible if it is not a direct product of bounded
symmetric domains of lower dimension.

Definition 4. A bounded domain D C C" is called classical if the complete group of its holo-
morphic automorphisms is a classical Lie group and it is transitive on it.

In homogeneous domains, the automorphism groups ( [1,2]) can be used to find integral
formulas. Domains with rich automorphism groups are often realized as matrix domains ([3,4]).
They turned out to be useful in solving various problems of function theory.

Complex homogeneous bounded domains are of great interest from different points of view.
This is due to the fact that they form a relatively wide class of domains in C”, for which a number
of meaningful, essentially multidimensional results have been obtained ([3,5,6] and etc.).
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In the works of C.Siegel, the presence of a biholomorphic mapping of classical domains
by Siegel domains is shown [7]. Such biholomorphic maps are described, and applications to
the problems of holomorphic maps to unbounded domains are given [8,9]. Therefore, classical
domains play an important role in multidimensional complex analysis. The goal of this work [10]
is to obtain a criterion for holomorphic extendibility into a matrix ball for functions defined on a
part of the Shilov boundary (skeleton) of a matrix ball, which is close in spirit to the criterion of
L. A. Aizenberg, A.M. Kytmanov [11], and G.Khudayberganov [12]. In [13], optimal estimates
of Bergman kernels for classical domains Ry (m,n), Rrr (m), Rrrr (m) and Ry (n) were found,
respectively, through Bergman kernels in balls from spaces C™", C"(m+1)/2 cm(m=1)/2 and C".
For this purpose, the statements of the Sommer-Mehring theorem on the continuation of the
Bergman kernel and some properties of the Bergman kernel are used.

The theory of functions of many complex variables, or multidimensional complex analysis,
currently has a fairly rigorously constructed theory [6,14,15]. At the same time, many questions
of classical (one-dimensional) complex analysis still do not have unambiguous multidimensional
analogues. This is due to the complex structure of a multidimensional complex space, over-
determination of the Cauchy-Riemann equations, the absence of a universal integral Cauchy
formula, etc. In the works of E. Cartan, C. Siegel [7], Hua Lo-Ken [3], I. I. Pyatetsky-Shapiro [16]
the matrix approach is widely used for presentation of the theory of multidimensional complex
analysis.

E. Cartan (see [17]) in 1935 initiated a systematic study of bounded homogeneous domains,
found all homogeneous domains in the spaces C? and C3. He gave a classification of all bounded
symmetric domains. These domains are divided into equivalence classes with respect to biholo-
morphic mappings. Each such class can be specified by any domain that belongs to it. Moreover,
it is obvious that it is sufficient to consider only irreducible classes, that is, classes of domains that
are not products of bounded symmetric domains of lower dimensions. In general, as E. Cartan es-
tablished [17], there are six types of classes of irreducible bounded symmetric domains. Domains
belonging to four of them are called classical because their automorphism groups are classical
semisimple Lie groups. Two of these types are special in the sense that each of them occurs in
the space C™ of only one dimension n, respectively for n = 16 and n = 27.

Consider the classical domains (see. [3,17]):

Rr (m,n) = {Z eClm,n): I™ — 27" > O},

Rrr(m) = {Z e Clm,m]: I'™ — 2Z > 0,2 = z} ,
Rirr(m) = {Z € Clm,m]: I™ + 2Z > 0,vYZ' = fz} :
Ry (n) = {z eC": (2, 2)P =212 +1>0, |(z,2)] < 1},

here 1(™) is the identity matrix of order m, Z’ is the complex conjugate matrix of the transposed
matrix Z' (H > 0 for a Hermitian matrix H means, as usual, that H is positive definite). All
these domains are homogeneous symmetric convex complete circular domains centered at O (O
is the zero matrix).

If we write the elements of the matrices Z € C[m,n] as a point in the space C™" then it is
in the following form

mn
zZ = {le, ey RInyR21y « v vy R2ny v e ey Bmly + v ey Zmn} € C .
Then we can assume that Z is an element of the space in C™*, i.e., we arrive to the following

isomorphism
C[m x n] 2 C™".
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Therefore, the dimensions of the classical four domains above are equal to
m(m+1) m(m-—1)
n
) 2 ) 2 )

respectively.

In [18] an analogue of Bremermann’s theorem on finding the Bergman kernel is obtained for
the Cartesian product of classical domains.

Writing out explicity the transitive group of automorphisms of four types of classical do-
mains and matrix balls (see, for example, [19,20]) associated with classical domains. By direct
computation one can find the Bergman and Cauchy-Szegd kernels for these domains. And then
(using the properties of the Poisson kernel), we can find the Carleman formula, which restores
the value of a holomorphic function in the domain itself from its values on some boundary sets
of uniqueness (see [21-24]). In this case, the scheme for finding the Bergman and Cauchy—Szegd
kernels from [3,6,25] is used.

The properties of the matrix ball By (m,n) of the second type are studied in [26]. In [27] the
volumes of a matrix ball of the third type and a generalized Lie ball are calculated. The full
volumes of these domains are necessary to find the kernels of integral formulas for these domains
(Bergman, Cauchy—Szeg6, Poisson kernels, etc.) and is used for the integral representation of
functions holomorphic in these domains, in the mean value theorem, and in other important
concepts.

For example, in [28] the regularity and algebraicity of mappings in classical domains are
studied, and in [29] harmonic Bergman functions in classical domains are studied from a new
point of view.

The first type of classical domain: Ry (m,n). Each point of the domain is a matrix with m
rows and n columns satisfying the following condition

I — 727 >0,

where I(") is a unit square matrix of the m*" order and Z* is a transposed conjugate matrix for
Z. Automorphisms of the classical domain of the first type R; (m, n) have the following form [3]

©(Z)=(AZ+B)(CZ+ D), (1)
where the coeflicients satisfy the following conditions:
AA* — BB* =1 AC* = BD*, CC* — DD* = —™, (2)
The automorphism (1) of the classical domain can also be represented as
¢ (Z2)=(ZB* + A") "1 (ZD* + C*), (3)
where the coefficients (3) satisfy the following conditions:
B*B—-D*D=—I" B*A=D*C, A*A-C*C =1, (4)
We can simplify the automorphism (1) as follows
©(Z2)=(AZ+B)(CZ+D) ' =A(Z+A'B)(D"'CZ+1) "D (5)
If we put A=Q, A"'B=—P, D =R, then we have
0(Z)=9¢p(2)=Q(Z—-P)(I-P*Z) 'R 6)

Then from (2) we get
QU —-PP)Q*=I", R(I—-P*P)R" =1I", (7)

We study some useful properties of automorphism ¢p (Z) in the following theorem (this is
an analog of the theorem 2.2.2 from [6]).
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Theorem 1. For an automorphism ¢p (Z) = Q(Z — P)(I — P*Z) 'R~ of the classical do-
main of the first type Ry (m,n), the following properties hold:

1% ¢p (P) =0, ¢op (0) = —QPR™1. In particular, if QP + PR = 0 then we have pp (P) =
Oa ¥Ypr (0) =P.

29, Differential of the automorphism of the domain R, (m,n) is equal to

d(¢p (P)) = QdZR*,d(¢p (0)) = (Q*) 'dZR ™,

where d(pp (P)) (d(vp(0))) is the differential of the automorphism (6) at the point Z = P
(Z=0).
3Y. For all Z,W € R; (m,n) we have

~det (I — (P,P)) - det (I — (Z,W)))
det (1= (2), 0 W) = 30 7= (Z.7)) - det (T — (P W)
det (I — (P, P))det (I — (2, 2))

det (I —(pp (2),9r(2)) = 32 (I—{(Z,P))det(I — (P, Z))

4%, If we have the following equalities QP+ PR =0, R = R*, Q = Q* then ¢p (¢p (Z)) = Z
(the property of involution).
5°. Finally, ¢p (Z) is a homeomorphism.

Proof. Let us prove turn by turn the above properties of the automorphism (6).
1°. The values of the automorphism ¢p (Z) at the points Z = P and Z = 0 are

or(P)=Q(P~P)(I-PP)'R" =0

¢p(0)=Q(0—P)(I-P - 0) 'R '=-QPR,

that is
op (P) =0, ¢p (0) = —QPR™"

the latter equalities follow directly. The condition QP + PR = 0 implies QP = —PR =
P =—QPR™!, that is,
¢p(0)=P.

We show that the matrix —QPR™! belongs to ®; (m,n):
—(-QPR™)- (-QPR™")" =I1-QPR*(R)" P*Q".
Thanks to the conditions (7) we have

R YR '=1-P*P.

— (-QPR™Y) - (-QPR™)" = I - QPR *(R™Y)'P*Q* = I - QP(I — P*P) P*Q*
— [~ QPP*Q* + QPP*PP*Q* = [ — QPP* (I — PP*)Q* = I —- QPP*Q'Q (I — PP*) Q*
= I-QPP*Q'I™ = (Q-QPP)Q ' =Q(I - PP)Q' =Q(I-PP)Q*(Q")'Q ' =
=1"(Q) Q7 =(Q) QT = (@) IMQT >0
Therefore, (—QPR™') € Ry (m,n) [30].
20, Now we calculate the differential of the automorphism ¢p(Z)=Q (Z—P) (I—P*Z) 'R~
So we have

dlpp (2) =Q(dZ(I - P*2)™" + (2~ Pyl - P*Z) ") R™! (8)

ep(Z)R(I-P"2)=Q(Z - P).
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From the last equality and according to the rules of differentiation we get

d(pp(Z2)) R(I = P*Z)+¢p(Z)Rd(I - P*Z) = Qd(Z - P),
(P (Z2)) R(I = P*Z) —pp (Z) RP*dZ = QdZ,
(pp (Z))R(I — P*Z) = QdZ + pp (Z) RP"dZ,
(pp(2)) R(I - P*Z) = (Q + ¢p (Z) RPY)dZ,

d(gp (Z)R(I - P*Z) = (Q +Q(Z—-P)(I- P*Z)*lR—lRP*) dz

Q. & X

Then we obtain
d(ep(2)) =Q (I r(Z-P)U - P*Z)_lP*) dz(I — P*Z)" 'R, 9)

If we calculate the differential of ¢ p (Z) at the points Z = P and Z = 0, we get the following
values

d(pp (P)) = QdZ(I— P*P)"'R™, d(¢p(0)) = Q(I — PP*)dZR™".
In accordance with the conditions (7), the following equality
(I-P*P)'R™'=R*, QU - PP*)=(Q") "
Then for the differentials of ¢p (Z) at the points Z = P and Z = 0 we have
d(pp (P)) = QAZR", d(op(0) =(Q") 'dZR™
3%, In order to prove this property, we use the expression (3) of the automorphism of the do-
main Ry (m,n). pp(Z) = (ZB* + A*) " (ZD* + C*), ¢p (W)= (WB*+ A*)"' (WD* + C*)
I-{¢(2), (W) =T = (ZB" + A*)™ (ZD* + C*) (WB" + 4") ™ (WD" +C*)) =
=1—(ZB*+ A" (ZD* + C*) (DW* + C) (BW* + A)~! =
= (ZB* + A*) ' ((ZB* + A*) (BW* + A) — (ZD* + C*) (DW* + C) )(BW* + A) " =
= (ZB* + A*)71 (ZB*BW* +ZB*A+ A"BW* 4+ A*A— (ZD*DW™* + ZD*C+
+ C*DW* +C*C))(BW* + A) ' =
= (ZB*+ A*) "I — ZW*) (BW* + A) "' =
1 -~
— (A (ZB*(A*)*1 + 1) (I—2ZW*) (A" BW* + 1) 'a~L,
If we put
A=Q, A'B=-P, D=R
and use
— Q*, B*(Afl)* — 7P*, D* = R*,
we get the following equality
I—(p(2), (W)= (@) (I-2ZP)  (I-2ZW*)(I-PW") Q! =

1 1 1 (10)
= (@)U =(ZP) (I-(ZW)I—-(PW)) Q"
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By using (7), it is not difficult to see that
det (Q (I — PP*) Q") = det (I<m>) . det (I — PP*)) = det (Q") - det ((Q*)*l) .
We use the last two equalities to obtain the following relation

det(1 = (p(2), @ (W) = G o e i pi )

If we put W = Z in (11), we get

_det (I — (P, P))det (I — (Z,2))
det (I —{pp (2), ep(2)) =+ (I —(Z,P))det(I - (P,2))

)

4°. We show that the automorphism ¢p (Z) = Q (Z — P) (I — P*Z) 'R~ is an involution
of the domain R, (m,n). Indeed,

or(p(2)=Q(Q(z-P)(1- P 2) 'R~ P)(1- P'Q(z- P) (1~ P'2) 'R™) R'=
—Q(Q(Z—-P)—PR(I-P2)(I—-P2) 'R R-(I—-P*Z)x

X (R(I—-P*2)—P*Q(Z—-P) 'R =
=Q(QZ — QP — PR+ PRP*Z)-(R— RP*Z — P*QZ + P*QP) 'R™! =

=Q(Q+ PRP*)Z — (QP + PR))- (R+ P*QP) — (RP* + P*Q) Z) 'R..
Since QP + PR =0, R= R*, Q@ = Q" and considering the following equalities
QU —-PP)Q*=I™, R(I—-P*P)R* =1I",
we have

Q(Q+ PRP*) =1 RP*4+P*Q=0, (R+PQP) 'R '=1M,
Consequently, we obtain

¢r(pp(2)) = Q((Q+PRP*)Z —(QP+ PR))- (R+ P*QP) = (RP*+ P*Q) Z) 'R™' = Z,
ie
ep (pp(Z)) = 2.
59, In order to prove this property we take Z;, Z, € ®;. Then

op(21)=Q(Z1— P)(I—P*Z1) 'R, ¢p(Zs) =Q(Za— P)(I - P*Zy) 'R,
o (Z1) —p(Z2) =Q(Z1 —P)(I-P*Z)) 'R™' = Q(Z— P)(I - P*Zy) 'R™' =

—-Q ((z1 —PY(I-P*Z) " —(Zy— P)(I - P*ZQ)*) Rl =

—Q (21(1 P2 21— P Z) - P ((1 Pz (- P*ZQ)‘l)) R
e (Zl(l P Z) T~ Z(I - P Z) T+ Zo(I - PR Zy) T -

—Zo(I—P*Z) — P ((I Pz (- P*Zg)_1)> R =
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~Q((A-Z)U-P2) " +(Z-P) (I-P2) — (=P Z) ")) R =

=Q ((Zlfzz) (I—P*Zy) " (Zo—P)(I—P*Zy) " (I—P*Zy—1I + P*Zl)(IfP*Zl)’l) R =

Q(( Zo) (I — P*Zy) "' + (Zs — P)(I — P*Zs) "' P* (24 722)(1713*21)*1) Rl =

z-p) () - ()P z) ) G-z - Py R

Q (z+<
Q ((P*)‘1 — Zy+ (Zy — P)) ((P*)—1 - Zz)il (Zy — Zo) (I — P*Z;) 'R~ =
0 ((P*)‘1 — o+ (Zo — P)) ((P*)‘1 - ZQ) (Zy — Zo) (I — P*Z,) 'R

=Q(I— PP*) (P 'P*(I - 2ZyP*) " (21— Zy) (I — P*Z)) 'R =
=Q(I—PP*)(I—ZyP*) " (Zy — Zy) (I — P*Z) 'R 1.
Thus

p(Z1) —¢p (Z2) = QI — PP*) (I — ZoP*) ' (Zy — Zo) (I — P*Z,)'R™L.

Since Q (I — PP*)(I — ZoP*)™" and (I — P*Z;)" 'R~ are different from O(O is the zero

matrix), we can easily see that ¢p (Z1) = ¢p(Z2) if and only if Z; = Z>. Hence pp (Z) is a

homeomorphism.
The proof is complete. o
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Hekoropnie cBoiicTBa aBTOMOP(U3MOB KJACCUYIECKOIl 00J1a-
ctu niepBoro tumna B rnpocrpaHcTse C[m x n]

I'yamupza X. Xynaiitbepranon

Harmonasbubrit yauBepcurer ¥Y306ekucrana nmenn Mupzo Yiayroeka
TarmkenT, Y36ekucran

Kyrmumypor C. pkuHO0€EB

VPpreHucKuii rocyJapCTBEHHbIN YHUBEPCUTET
Ypreuu, Y3bekucran

Awnnoranms. B s10ii crarbe nosyden ananor Teopemsbr 2.2.2 n3 xkauru Pyauna [6] mis kiaaccuaeckux
obsacreit Kaprana nmepsoro tuna.

KuroueBrbie cioBa: ofHOPOHAST 001aCTh, CAMMETPUYIHAS 00JIACTh, KJIACCUIeCKas 00JIaCTh, aBTOMOD-
busm.
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