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Abstract: As aerostatic bearings are used in high-speed metal-cutting machines to increase 

machining accuracy, there is the need to improve their characteristics, including compliance, which 

is usually high. In practical applications, a significant reduction of bearing compliance is often 

necessary, sometimes down to zero and even negative values, to ensure automatic compensation of 

the elastic deformation in the machine technological system. A decrease in compliance leads to 

deterioration in the dynamic performance of the bearing, so it is necessary to develop new designs 

that meet the above requirements. This article considers an aerostatic bearing, in which decrease in 

compliance is ensured by the use of air throttling with elastic orifices. To ensure its stability, the 

principle of combined external throttling was applied, which can substantially improve the 

dynamics of conventional aerostatic bearings. A mathematical model of the elastic orifice 

deformation was developed, together with the flow rate performance calculation method. The 

method ensured full qualitative and satisfactory quantitative agreement with the experimental data. 

The model was used in the mathematical modeling of the aerostatic bearing movement. The article 

also proposes a method to calculate the static load capacity and compliance of a bearing, as well as 

a numerical method for fast computation of its dynamic performance, which allows for real-time 

multi-parameter optimization by the bearing dynamic performance criteria. The study showed that 

there is an optimal set of design parameters for which low, zero, and negative static compliance of 

the bearing is ensured, with the necessary stability margin, high speed, and the non-oscillatory 

nature of the transient processes. 

Keywords: aerostatic thrust bearing; elastic orifice; external combined throttling; zero compliance; 

negative compliance; quality of dynamics 

 

1. Introduction 

The exceptional advantages of aerostatic bearings are the high rotation speed and extremely low 

friction [1–5]. The bearings are lubricated with compressed gas from the source into the flow path, 

which usually uses passive elements to limit the gas flow to create a certain pressure which is 

necessary to maintain the current load and to control the displacement of the moving part of the 

structure, thereby ensuring its stiffness [4–6,10–16,32–34]. And although the development of 

technology has contributed to the improvement of bearings, they still have a drawback—low stiffness 

[11,13,22,23]. 
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In 1960, John H. Laub and Frank Batsch of the California Institute of Technology’s Jet Propulsion 

Laboratory announced experiments with elastic orifices as a simple means to control the flow of gas 

lubricant [7], that helped to improve the performance of structures by increasing stiffness, thus 

providing them with a competitive advantage compared to other types of bearings. Subsequent 

experimental studies at the Stanford Research Institute demonstrated the dependence of an elastic 

orifice performance on the geometry and material properties [8,9]. 

However, the characteristics of such bearings and the optimal operating conditions have not 

been studied and as well the methods for their calculation have not been developed. Attempts at 

mathematical modeling and calculation of elastic orifices did not lead Newgard P. M. and 

Kiang  R.  L. to results that would give satisfactory agreement with experimental data [17]. 

The thrust bearing design described by these researchers, apparently, is not very suitable for 

practical use, because with a small chamber depth the elastic orifice cannot be deformed, while with 

a large depth the dynamic performance of the bearing will inevitably lead to instability. 

Bearings with external combined throttling of gas have certain prospects, which make it possible 

to ensure stable operation of structures even in the presence of a relatively large volume of gas 

enclosed in an intermediate chamber [18,32,35].  

The literature indicates that replacing a passive throttling diaphragm in the prototype with an 

elastic orifice produces a bearing which may have a potential to reduce stiffness. The mathematical 

modeling and theoretical study of the static and dynamic characteristics of such a bearing is actually 

the goal of this study. 

The article proposes a method for calculating the static bearing capacity and bearing compliance, 

as well as a numerical method for quickly calculating its dynamic characteristics, which allows 

performing multi-parameter optimization of the criteria for the quality of bearing dynamics in real 

time. The study showed that there is an optimal set of design parameters for which a low, zero, and 

negative static bearing is ensured, with the necessary stability margin, high speed and non-oscillatory 

nature of the transients. 

2. Design Scheme of the Bearing 

The layout of a circular type bearing with a throttling elastic orifice and damping annular 

diaphragms is shown in Figure 1. 

 

Figure 1. Aerostatic thrust bearing with external combined throttling and an elastic orifice. 

The design consists of a base 1 and a movable part 2, separated by a lubricant gap of thickness 

h. Gas under constant pressure ps through a throttling diaphragm of radius rp of the elastic orifice 3 is 

supplied to the chamber 4 of volume vp, where the pressure becomes equal to pp < ps. Then, through 

damping annular diaphragms of diameter dk evenly spaced along a circle of radius r1, gas under 

pressure pk < pp enters the bearing layer of the bearing, having overcome it and then flows into the 

environment at pressure pa. 



Lubricants 2020, 8, x FOR PEER REVIEW 3 of 20 

 

The bearing operates as follows. A change in the external force f on the bearing first causes a 

change in pressure pk, then a pressure pp, as a result of which the elastic orifice is deformed and the 

radius rp of the throttling diaphragm changes, as shown in Figure 2. As a result, an additional change 

in gas flow through the elastic orifice occurs. By a targeted choice of the elasticity of the elastic orifice, 

it is possible to obtain the desired shape of the load characteristic and bearing stiffness in the 

calculation area. 

 

Figure 2. Elastic orifice deformation pattern. 

In a theoretical analysis of the bearing under study, it is convenient to replace the stiffness 

function with its inverse compliance function, which is the transfer function of the elastic system and 

is determined by the limit of the ratio of the output quantity (change in the thickness h of the carrier 

gap) to the input value (load change f). 

3. Mathematical Modeling of Elastic Orifice Deformation 

The design scheme of the elastic orifice deformation is shown in Figure 2. The modeling of elastic 

orifice deformation is based on the theory of large deflections of thick plates. Below, is a developed 

mathematical model. 

3.1. Elastic Orifice Deformation Model 

As can be seen from Figure 2, the radius of the orifice can be calculated by the formula 

0
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where rp0 is the radius of the undeformed orifice, r is the current radius, ψ = ψ(r) is the deflection 

function, u = u (r) is the tensile function of the middle surface of the elastic orifice. 

Considering the elastic orifice as a round plate with large deflections, we obtain the resolved 

system for the function in the form [19] 
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where φ = φ(r) is the Airy stress function, rs is the outer radius of the elastic orifice, E is the elastic 

modulus of the orifice material, ν is Poisson's ratio [20]. 
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During operation, the outer edge of the elastic orifice does not experience deflection, therefore 

( )ψ 0sr =   (4) 

On the inner and outer radii of the orifice there are no bending moments and normal stresses in 

the radial direction, therefore 
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Within the framework of Hooke's law, the relation between the tensile function and the Airy 

function has the form [19] 
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The system of equations (2), (3), (9), taking into account the boundary conditions (4)–(8), is closed 

and allows one to determine the functions ψ and u. Using these functions, one can find the radius rp 

of the deformed elastic orifice by the formula (1). 

The proposed calculation model (1)–(9) of elastic orifice deformation is a first approximation. In 

a more rigorous formulation, it is necessary to take into account the change in the tensile function not 

only in the radius but also in the height of the orifice. 

The calculation of the characteristics of the elastic orifice are carried out in a dimensionless form 

using dimensionless quantities 
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Differential Equations (2), (3) are nonlinear, therefore, to solve the problem (1)–(9), an iterative 

process was constructed, at each step of which a system of linearized differential equations was 

considered 
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with boundary conditions 
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where n = 0,1, 2, ... is the iteration number, 
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The initial approximation for the function T(R)is its value for an undeformed elastic orifice. 

The linearized boundary value problems (10), (14), (15) and (11)–(13) were solved at each 

iteration using the finite-difference sweep method [21]. The iterative process (10)–(15) was stopped 

when the condition 

( ) ( )1
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n n
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+
−    (16) 

where eps is some small positive number (in the calculations eps = 10-4 is accepted). 

The dimensionless radius of the elastic orifice diaphragm, taking into account (1), (9), (15), was 

calculated by the formula 
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  (17) 

Based on the presented formulas, the radius of the orifice was calculated under the action of the 

differential pressure in the bearing on the elastic orifice. 

3.2. Analysis of Elastic Orifice Calculation Results 

The results of the described method for calculating the elastic orifice were compared with the 

experimental data of Newgard P. M. and Kiang R. L. [17] for two elastic orifices: 1—for rp0 = 

0.125  mm, δ = 2.64 mm; 2—for rp0 = 0.19 mm, δ = 1.14 mm. The comparison results are shown in 

Figure 3. 
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Figure 3. Comparison of the calculated (solid lines) and experimental (dashed lines) of the mass air 

flow dependences q through elastic openings from pressure difference ps − pp at rs = 3.175 mm, 

1—for rp0 = 0.125 mm and δ = 2.64 mm, 2—for rp0 = = 0.19 mm and δ = 1.14 mm. 

The graph shows the theoretical (solid lines) and experimental (dashed lines) sensitivity curves 

of various-sized elastic orifices with Shore hardness A – 45 (E = 2.16 MN/m2, ν = 0.5) at ps= 238 kPa. 

The pressure difference ps − pp is plotted along the x-axis, and the mass flow q of gas through the 

orifice is plotted along the y-axis. The calculations used the formula 

( )
2

0 0

,
p p

p s

c r
q p p

R T


=   

where cp = 0.85 the empirical coefficient of an orifice diaphragm [22], R0 = 287 m2/(c2 K) is the gas 

constant, T0 = 293 K is the absolute temperature, Γ = 4.313 is the adiabatic constant of air [22]. 

It can be seen from Figure 3 that these curves have a complete qualitative and satisfactory 

quantitative agreement. Therefore, the described method can be used to a first approximation in the 

calculation of supports with an elastic orifice. 

The discrepancy between the theoretical and experimental curves at large pressure drops (at 

large deformations of the elastic orifice) can be explained by the fact that with an increase in the strain, 

the error increases in the approximate formula (1), in Equations (2), (3), which do not take into account 

the changes in the functions ψ and u in the height of the elastic orifice, as well as in relation (9) based 

on Hooke's law, which for rubber at large deformations gives a progressive error. At pressure drop 

values from low to moderate the discrepancy is no more than 15%–20%, which is quite acceptable. 

High values of the discrepancy appear only at excessively large differences, however, these modes 

are not of interest, because in this case the acceptable load of the bearing is way too low. 

When calculating the compensating effect of an elastic orifice, the dimensionless input 

parameters varied in the region  1.5,6 ,sP   1.01, ,p sP P  0 0.05,0.08 ,pR   0.1,1.5 ,  ε 10,50 ,

 ν 0.45,0.5 .  

Figures 4,5 shows the calculation results for the elastic orifice, showing that Rp substantially 

depends on Δ and ε and only slightly depends on ν. 

The working radius Rp is an almost linear function of the differential pressure, therefore, it can 

be approximated with the expression 

( )0 1p p e s pR R K P P = − −
 

  (18) 

where Ke is the elastic ratio of the orifice. 

Graphs of Figures 4,5 and Equation (18) approximately determine the values of Ke. For the curves 

corresponding to ε = 15, we have approximate Equation (18), which implies that Ke ≈ 0.95. For the 
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curves corresponding to ε = 30, a similar equation has the form ( )0.0119 0.02 1 1.2 ,eK − whence it 

follows that Ke ≈ 0.34. 

 

Figure 4. Dependences of Rp on Ps - Pp for various Δ; ε = 25, ν = 0.5, Rp0 = 0.02, ν = 0.5. 

 

Figure 5. Dependences of Rp on Ps − Pp for various values of ε; ν = 0.5, Δ = 0.4, Rp0 = 0.02, solid 

lines— theory, dashed lines—experiment. 

4. Bearing Mathematical Model 

To model the bearings presented on Figure 1, we used a mathematical model of motion of a 

gas- static bearing with combined external throttling [18], which based on Reynolds differential 

equation [3,22], describes the pressure distribution in a thin lubricating gap, and uses the position of 

“continuous pressurization line” to replace discrete annular diaphragms with a continuous pressure 

function on the line of their locations [36]. 

The model takes into account the difference regarding the input throttling resistance, which is 

an elastic orifice. The dimensionless flow rate through this resistance is expressed by the formula 

( )2 ,p p p s pQ A R P P=    (19) 

where the change in the radius of the passage of the elastic orifice is determined by formula (18). 

4.1. Bearing Static Model 
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The static model will include two equations of equality of the flow rate Qp through the elastic 

orifice and Qk through the damping annular diaphragms, the flow rates Qk and Qh at the entrance to 

the bearing layer of the dimensionless thickness H, as well as the equation of force equilibrium of the 

movable element 2, connecting the bearing capacity W and the load F to the movable element 
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1/ ln ,h cA R= − Π is the Prandtl expiration function [18]. 

Obviously, the method of calculating the load characteristic H(F) used for conventional bearings, 

in which the input value is convenient to use H and the output F = W, is not suitable in this case, 

since, as will be shown below, this function can be multi-valued, i.e. several values of H may 

correspond to one value of F. Moreover, for certain values of this variable, the value of F may not be 

found. 

Therefore, a parametric method was used to determine the load F and the gap H, as a function 

of pressure Pp 

( ), ( ).p pF F P H H P= =  

When calculating the static characteristics, we used the boost pressure Ps, radius Rc, the tuning 

factors of the combined external throttling system χ, and the elastic ratio of the elastic orifice Ke. 

The method for calculating static characteristics includes 

− determination of the “calculated point” parameters corresponding to the dimensionless 

thickness of the bearing layer H = 1, 

− calculation of flow rate Q(F) and load H(F) characteristics of the bearing. 

In the “calculated point” mode, the coefficients Ak, Ap of expenses (21), (22) are determined. First, 

we calculate the coefficient Ah and determine the pressure Pk, Pp, corresponding to the value of the 

calculated clearance H = 1 

( ) ( )2 2 2 21 χ 1 , ,k s p k s kP P P P P P= + − = + −  

then we calculate the coefficients 

( ) ( )
, .
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h h

k p
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P P P P
= =
 

  

When calculating the flow and load characteristics, we sequentially set np pressure values 

 1,p sP P according to the formula ( )1 1 / ,p p s pP i P n= + − 0,1,..., .p pi n= For each of its values, we can 

find the flow Qp according to formula (19). 
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The first two Equations (20) allow us to write a nonlinear equation for an unknown pressure 

1,k pP P  
in the form 

( )3 2 1 0h k pA H P Q− − =   (25) 

where 
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The solution of Equation (25) was found by the bisection method [21]. The integral in 

formula (23) of the bearing capacity W was calculated by the Simpson rule [23]. 

Bearing compliance is determined by the formula 
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Equation (20) make it possible to establish the values of the elastic ratio Ke, at which the bearing 

reaches zero compliance (K = 0). 

To determine the compliance of the bearing, we give the load F a small perturbation ΔF. The 

response will be disturbances ΔH, ΔPk, ΔPp, quantities H, Pk, Pp, respectively. 

We write the system of Equation (20) with respect to disturbances in the matrix form 
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Solving (28) by the Cramer rule [21], we obtain the formula for bearing compliance 
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Using (29), it is possible to set the value of the elastic ratio Ke, at which the bearing has zero 

compliance (K = 0). Most simply, this can be done for the "calculated point" mode H = 1. Using (19), 

(20), (22), (29), we find 
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(30) 

In calculations it is sometimes convenient to use an inverse relationship 
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It has been found that for relatively large Ke, the bearing can lose stiffness. This is the case when 

the denominator (29) vanishes. It is easy to verify that this occurs when 
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Note that the critical value of the elastic ratio Ke calculated by formula (32) occurs when Rp > 0, 

that is, when the orifice is still able to pass gas during deformation. It closes only when the pressure 

drop is too large and 1
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4.2. Static Characteristics of the Bearing and Their Discussion 

Figure 6 shows the load characteristics H(F) of an elastic orifice bearing for different values of 

elastic ratio Ke. All curves intersect at one point corresponding to the “calculated point” mode H = 1. 

 

Figure 6. Load characteristics H(F) for various values of the elastic ratio Ke; Ps= 5, Rc = 0.5, χ = 0.48, 

ς = 0.3. 

It can be seen that with increasing Ke, the curvature of the lines changes significantly. When 

Ke = 0, that is for the rigid orifice 3, the compliance of the bearing K is always positive. With increasing 

Ke in some parts of the load characteristic, the compliance decreases to zero (K = 0), which corresponds 

to infinite stiffness, and even a negative value (K < 0). So, at Ke = 0.22 and F ≈ 1.5, the bearing has zero 

compliance. At Ke = 0.22, one can find the region 0.35 < F < 4.4, in which the bearing has negative static 

compliance (K < 0). 

Figure. 7 shows graphs of expenditure flow rate dependencies Q(F). It is seen that with an 

increase in the coefficient Ke, the nature of the curves changes sharply. Comparison of graphs Figures 

6,7 shows that the less the compliance of the bearing, the lower the mass flow rate of air. 
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Figure 7. Flow rate characteristics Q(F) for various values of the elastic ratio Ke; Ps= 5, Rc = 0.5, χ = 0.48, 

ς = 0.3. 

Figure 8 shows the curves of the dependence of the static compliance K on the coefficient ς of 

the setting of the damping annular diaphragms for the “calculated point” mode H = 1. 

 

Figure 8. The dependences of the static compliance K on the coefficient ς for various values of the 

elastic ratio Ke; Ps= 5, Rc = 0.5, χ = 0.48. 

This is explained by the fact that at low loads the pressure difference Ps − Pp is large, and as 

follows from formulas (18), (19) for Ke > 0, the diaphragm radius Rp will be small, and, therefore, the 

flow rate Qp will be small. As the load F increases, the pressure difference Ps − Pp decreases and, 

consequently, the radius Rp and the flow rate Qp increase, thereby providing an additional supply of 

lubricant to the bearing, which contributes to a more intensive decrease in bearing compliance K. 

An analysis of the curves shows that the dependences K(ς) for the modes of positive compliance 

are monotonous in nature, while for zero and negative compliance they are unimodal in nature, 

where the minimum of the dependencies falls on a certain value of ς. Moreover, the smaller this 

minimum, the greater the corresponding ς. 

Figure 9 shows the curves of the dependence of the elastic parameter Ke0 on the coefficient ς of 

the tuning of the damping annular diaphragms for the “calculated point” mode H = 1, at which the 

bearing has zero compliance. For smaller χ and ς, smaller Ke = Ke0 are required. At the same time, 

when setting to too small χ, there may be no modes in which the bearing reaches zero compliance. 
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The Ked values determined by formula (31) give the upper boundary on the admissible values of 

the elastic ratio Ke = Ked. For Ke > Ked, the bearing is also statically unstable. 

5. Bearing Dynamic Model 

The mathematical model of the bearing dynamics is based on a bearing motion model with 

combined external throttling [18]. The only difference is that the formula for the deviation of the 

Laplace transform of the gas flow through the throttling simple diaphragm is replaced with the 

corresponding flow formula through the elastic orifice, which has the form 

,p pp pQ A P =   

( )
( )

,
2 ,

s p

pp P p p e s p

p

P P
A A R R K P P

P

 
 = + 

  
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where Rp, Pp are static parameters. 

5.1. Method for Determining the Transfer Function Coefficients of Dynamic Bearing Compliance 

In the calculations, a new method was used to determine the criteria for the quality of bearing 

dynamics, the essence of which is described below. 

The transfer function (TF) of the dynamic compliance of the bearing, as a system of automatic 

control and regulation can be represented in the form 

2

0 1 2

2

1 2

...
( )

1 ...

m

m

n

n

b b s b s b sH
K s

a s a s a sF

+ + + +
= =

+ + + +
  (33) 

where n > 0, m > 0, n > m, s is the Laplace transform variable [24]. 

The denominator (33) is the characteristic polynomial (CP) of a linear dynamic system with 

distributed parameters, the use of which in the study of its dynamics quality allows us to determine 

the stability margin and evaluate the system’s speed from the roots of the characteristic equation 

[23,24]. 

For a system with distributed parameters, it is necessary to use a method that would ensure its 

presentation in the form (33) based on the calculation of the criteria of stability margin and speed of 

devices with a predetermined accuracy. 

The representation of the TF in the form of (33) falls under the classical problem of rational 

interpolation [25], the solution of which, however, does not provide an exhaustive answer to the 

question of the accuracy of the system stability criteria obtained by root methods using the 

characteristic equation, because the value of the degree of CP is unknown in advance.  

Existing methods of linear interpolation are based on solving a linear system of equations with 

respect to coefficients (33), which contains n + m equations [25]. Such systems can be solved using 

general methods, for example, the Gauss–Jordan method, which has a cubic order of complexity 

(n  +  m)3 (hereinafter, the order of complexity of the computational method means the time 

complexity of the algorithm that implements it [25,28]). For large n and m, this can entail a significant 

expenditure of computer time in the process of multi-parameter optimization of a dynamic system. 

This article presents a quick method to find the coefficients (33). It is based on solving systems 

of linear equations of a special form of a substantially smaller order, which allows one to find their 

solution using fast methods with a quadratic order of complexity m(n + m), which contributes to a 

significant acceleration of the optimization procedure for dynamic systems. If it is required to find 

only CP coefficients, then the order of complexity of the method is n2. 

When conducting rational interpolation, the degrees n and m of polynomials (33) should be 

known. However, their acceptable values can be obtained only on the basis of satisfactory accuracy 

in determining the quality criteria of the dynamics of the system. 

If it is impossible to determine the values of these parameters without calculating the mentioned 

criteria, then finding their difference is not difficult. 

Indeed, if an ≠ 0 and bm ≠ 0, then the infinite limit 

( ) 0p m

n

b
s K s

a
→    (34) 

where p = n – m. 

Usually, the difference p is calculated in several units, more often p = 1 or 2, therefore, you can 

find this limit and p can be fast enough. 

We set the value of m, define n = m + p and find the coefficient 

0 (0).b K=  

We rewrite (1) in the form 

( )1 1

1 2 1 2... ( ) ... ( ) /n m

n ma a s a s s b b s b s s s− −+ + + + + + + =    (35) 
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We represent the matrix of the system in the form 

M = ΦU (37) 

where U is the matrix, Φ is the matrix of the discrete Fourier transform [29] 

, ( , )i j S i j =  

where 

1 (( 1)( 1))( , ) , 1,2,..., 1; 1,2,..., 1,

( ) mod .

q i jS i j s i k j k

q x x k

+ − −= = − = −

=
  

Its inverse matrix is determined by the formula 

1

,

1
( , ).i j S i j

k

− =   

Multiplying Φ−1 by (37), we bring the system (35) to the form 

Ux = z (38) 

where 1 ,U M−=
1 .z y−=  

For m > 0, the matrix U has a cellular structure of the form 

.
0

E C
U

D

 
=  
 

  

where E and 0 are the identity and zero matrices of size n n  and m n , C and D are Toeplitz 

matrices of size n m  and m m , respectively[28]. 

Indeed, the blocks of matrices Φ-1and M cells are mutually inverse matrices of the discrete 

Fourier transform, therefore, their product will give the identity matrix E. Elements of the block of 
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cells are obtained by multiplying the rows of the matrix Φ−1 and the columns of the matrix M, which 

are also elements of the direct and inverse matrices Fourier transform. The sums of their products, 

giving off-diagonal elements of the identity matrix, will be zeros by analogy with the way this holds 

for the zero elements of the block E located above them. 

The nature of the matrices A and B is explained by the fact that the elements of the columns of 

the matrix M for j > n are formed by sums of products of displaced elements of the matrix Φ and the 

elements of vector Γ that are different from unity. In such cases, their scalar products yield Toeplitz 

matrices [28]. 

From Equations (37) and (38) it follows that for m > 0 the vector b of the coefficients of the TF (33) 

satisfies the system of equations 

Db =d (39) 

where d is a vector. 

Compared to the original Equation (35) of order k = n + m, Equation (39) has a significantly lower 

order of m < k/2. Therefore, the solution for it can be obtained much faster. 

Equation (42) is a standard problem with an asymmetric Toeplitz matrix of a special form [27], 

which can be solved both using general methods, for example, the Gauss–Jordan method [31], the 

complexity of which is proportional to m3, and using special fast methods taking into account the 

features of Equation (42) and having complexity proportional to m2. The latter include the methods 

described in [27,31]. 

Elements of the matrix C can be expressed in terms of the vector l 

, ( ) , 1,2,..., ; 1,2,..., .i j q k i jC l i n j m+ −= = =  

With this in mind, we can dispense with the matrix C and, using the solution of system (10), 

quickly find the CP coefficients using the complexity nm formula 

( )

1

, 1,2,..., .
m

i i q k i j j

j

a l l b i n+ −

=

= − =  

With this in mind, the total complexity order of this method for finding the coefficients (33) is 

m(n + m). 

5.2. Quality Criteria for Bearing Dynamics 

To assess the quality of the dynamics of linear systems, root criteria are often used [24]: 

− degree of stability η = Max Re{si}, where si are the zeros of the characteristic polynomial of the 

dynamical system, which is the polynomial denominator of the TF (33), 

− damping of oscillations over a period ( )ξ 100[1 2πβ/η ]%Exp= − − , where β is the imaginary part 

of the root of the characteristic equation with the largest real part. 

The degree of stability η characterizes the speed of the system, that is, the rate of attenuation of 

its free oscillations. 

The criterion ξ of damping of oscillations over a period can be applied to the estimation of the 

system stability margin. The smaller ξ, the greater the transient response will have an oscillation, and 

the system will have a smaller margin of stability. It is believed that a dynamic system is well damped 

if ξ ≥ 90% [24]. 

At the beginning, using the algorithm for calculating the values of the transfer function, the 

degree difference is determined by the TF polynomial p = n – m based on (34). 

Further calculations are carried out using the following iterative process. 

Step 1. Put i= 1 and m = 1, η0 = inf, ξ0 = inf, where inf is a large number (for example, inf = 1010), set the 

accuracy of determining the degree of stability εη and the damping of oscillations for the period 

εξ. 

Step 2. Calculate n = p + m and, after performing rational interpolation find the vector a of the CP 

coefficients. 
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Step 3. Determine the roots of the characteristic equation, find among them the root with the largest 

real part and calculate the criteria ηi and ξi. 

Step 4. Verify that the iterative process converges to a solution 

1η η ,i i −−  1 ξξ ξ εi i−−  . 

Step 5. If conditions (12) are fulfilled, then the quality criteria of the system dynamics are determined 

with the required accuracy, otherwise the process should be continued. To do this, increase the 

values of the iteration counter i and degree m by one and go to step 2. 

The method described above was used to calculate the quality criteria of the dynamics of the 

bearing under consideration. 

5.3. Bearing Dynamic Characteristics and Discussion 

Among the parameters that do not affect the static characteristics, but affect the dynamic 

characteristics of the bearing, are the “compression number” σ and the volume of the intermediate 

cavity Vp [18]. The influence of these parameters is of particular interest, because they are a resource 

to optimize the quality of a dynamic system. 

Table 1 shows the results of bearing optimization according to the performance criterion, which 

consisted in finding such pairs (σ, Vp) whose values deliver the maximum degree of stability η. 

Optimization was carried out for the values of other input parameters: Ps = 5, Rc= 0.5, χ = 0.48, ς = 0.3, 

H = 1. The parameter iK was varied, with the help of which the static compliance K was calculated by 

the formula 

0 ,K iK K=   

where K0 is the static compliance of the bearing corresponding to hard orifice 3 (Ke = 0). 

Corresponding K values of the coefficient Ke were calculated by the formula (30). 

Table 1. Optimum bearing parameters. 

iK K Ke η σ Vp 

1.0 0.127 0 0.301 11.6 15.4 

0.5 0.064 0.342 0.288 13.2 5.9 

0 0 0.320 0.278 13.2 6.6 

–0.5 –0.064 0.382 0.272 13.9 4.2 

–1.0 –0.127 0.378 0.274 14.0 4.3 

–1.5 –0.264 0.401 0.264 15.3 3.2 

 

An analysis of the calculation results showed that for each set of source data there is exactly one 

pair of values of the parameters σ, Vp that deliver the maximum performance criterion η. From 

Table  1 it follows that with a decrease in compliance, the optimal σ tends to increase, while the 

optimal Vp tends to decrease. With an increase in Ke, the performance of the bearing decreases 

somewhat, but it remains stable even with negative values of K that are in absolute value superior to 

those of a conventional bearing (Ke = 0). 

A detailed idea of the influence of the parameters σ, Vp on the degree of stability is given by the 

graph curves of Figure 11, which are constructed for the same initial data and Ke = 0.32, at which the 

bearing has zero static compliance (K = 0). 

The graphs confirm the conclusion that the dependences η(σ) and η(Vp) are extreme. It can be 

seen that for the regime of zero compliance, it is necessary to choose the values σ > σmin, where σmin is 

the value of the parameter σ at which the system reaches the stability boundary (η = 0). 

For σ < σmin, the system is unstable, and for σ > σmin the stability region is divided into two parts 

σmin < σ < σopt and σ > σopt, where σopt is the value of the parameter σ at which the function η(σ) reaches 

its maximum. 

It was found that in the first part of this region, the transient characteristics are always oscillatory 

in nature, and in the second, they can be both oscillatory and aperiodic. 
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This follows from the analysis of graphs in Figure 12, where the dependences of the decay 

criterion for the period ξ on the compression number σ are presented. For Vp < Vpopt, the criterion ξ 

indicates the oscillatory nature of the transients (ξ < 100%), where Vp opt are the values of the 

parameter Vp at which the function η(Vp) reaches its maximum. The graphs show that for Vp < Vp opt 

all the curves, regardless of the value of σ, indicate the vibration nature of the transients (ξ < 100%), 

for Vp > Vpopt the transients become aperiodic (ξ = 100%). It is also seen that with an increase in Vp, the 

range of aperiodicity of the transient characteristics expands, that is, an increase in the volume of Vp 

contributes to an increase in the dynamic stability margin of the bearing as a dynamic system. 

 

Figure 11. Dependences of the degree of stability η on the “compression number” σ for various values 

of the volume Vp. 

 

Figure 12. Dependences of criterion ξ on the “compression number” σ for various values of the 

volume Vp. 

The data obtained allow us to give recommendations on the choice of values of the parameters 

σ and Vp. The values of σ and Vp should be considered the best, which are slightly larger than the 

optimal σopt and Vpopt. For example, for the mode of zero static compliance K = 0, σ = 14 and Vp = 7 will 

be the best. In this case, the bearing will have close to maximum speed and an aperiodic nature of the 

transition characteristics.  

6. Conclusion 
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A mathematical model of statics and dynamics of a thrust gas-static bearing with an elastic 

orifice was formulated, a model for the deformation of an elastic orifice and a method to calculate the 

radius of its throttling diaphragm are proposed, a fast numerical method to calculate the quality 

indicators of the dynamics of a linear system with distributed parameters was developed, methods 

for determining the static and dynamic characteristics of the bearing were developed. 

Calculations using the proposed model of elastic orifice deformation showed that its 

characteristics have full qualitative and satisfactory quantitative agreement with the results of 

experiment [17]. The flaws of the model were revealed and it was concluded that the proposed model 

and the method described can be used to a first approximation to calculate the radius of the supply 

diaphragm of the elastic orifice. The results of the study of the deformation of the elastic orifice are 

the basis for the model of the static and dynamic state of the bearing. 

A formula was derived that allows one to calculate the value of the elastic ratio at which the 

bearing reaches zero compliance, and a formula to calculate the value of this parameter, at which the 

bearing loses its static stability. 

The use of the fast numerical method to calculate the bearing dynamics quality criteria made it 

possible to repeatedly increase the speed of the multi-parameter design optimization algorithm by 

the performance criterion. A numerical experiment showed that, compared with the previously used 

method, the speed of the algorithm increased by about 12 times. 

It was shown that the use of an elastic orifice allows a multiple reduction of positive compliance 

of the bearing, and also allows reduction of the compliance of the bearing to zero and even negative 

values. 

An analysis of the quality criteria of structural dynamics confirms that with an optimal choice 

of the compression number σ and the volume of the inter-throttle chamber Vp of the throttle chamber, 

the bearing can provide high speed and a guaranteed stability margin, while keeping the transition 

characteristics non-oscillatory. 
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Notations 

CP 

E 

f, F 

h, H 

K 

Ke 

n , m 

pk, Pk 

pp, Pp 

ps, Ps 

Qh,Qp 

r, R 

r1, R1 

characteristic polynomial 

elastic modulus of the orifice material  

dimensional and dimensionless bearing loads 

dimensional and dimensionless gaps 

dimensionless bearing compliance 

dimensionless elastic ratio  

transfer function polynomial orders 

dimensional and dimensionless air pressures at the exit of annular orifice plates 

dimensional and dimensionless air pressures at the chamber 4 

dimensional and dimensionless air supply pressures  

dimensionless mass flow rates 

dimensional and dimensionless radii 

dimensional and dimensionless radii of arrangement of annular diaphragms 
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rp, Rp 

rp0, Rp0 

s 

TF 

u,U 

 

vp, Vp 

,H F   

η 

ν 

ξ 

Π 

σ 

ς 

φ, Φ 

χ 

ψ, Ψ 

dimensional and dimensionless radii of elastic orifice diaphragm 

dimensional and dimensionless radii of elastic orifice 

Laplace transform variable 

transfer function 

dimensional and dimensionless tensile functions of the middle surface of the elastic 

orifice 

dimensional and dimensionless values of chamber 4 

Laplace transformants of the deviation of dynamic functions from their static values 

degree of stability 

Poisson's ratio 

damping of oscillations over a period 

Prandtl expiration function 

“compression number” 

coefficient of resistance adjustment of damping annular diaphragms 

dimensional and dimensionless Airy stress functions 

elastic orifice resistance adjustment coefficient 

dimensional and dimensionless deflection functions 
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