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ABSTRACT

Context. The hypothesis about computational redundancy of the dichotomy method used for conditional minimization of
unimodal functions was formulated, and on this basis the idea of the possibility creating a more efficient method was suggested.

Objective. The aim of the work is to develop a technique for eliminating computational redundancy of the dichotomy method
and the creation numerical method of increased speed called the economical dichotomy method. The algorithm and program code
implementing the method are also subjected to development.

Method. The method is based on the unimodality property of the function being minimized, which, under certain conditions,
allows to reduce the number of calculations of the function being optimized, which helps to increase the speed of the economical
search.

Results. The given results of the computational experiment showed that, according to speed, determined by the number of
calculations of the minimized function, the economical method is not less than 1.5 times more efficient than the classical
dichotomous search. This means that, on average, of the three calculations of the minimized function using the dichotomy method,
one is redundant. Compared with the golden section search, which is the fastest method of the cut-off family, and the dichotomous
search, in the average statistical terms, the economical method has approximately 1.3 and 1.7 times faster response, respectively.
That is, the economical method works so many times faster than the golden section search, how many times the latter works faster
than the classical dichotomous search.

Conclusions. These findings make it possible to take a critical look at the well-established notion that the dichotomous search is
the worst of the series methods for cutting off segments. Taking into account the obtained results, the economical method of
dichotomy is noticeably superior in speed to the best of them - the golden section search and can reasonably claim to be a leader in

this series of methods.

KEYWORDS: unimodal function, dichotomous search, golden section search, economical dichotomous search, monotone

function, method speed.

ABBREVIATIONS
GSS — golden section search;
DS — dichotomous search;
EDS — economical dichotomous search;
MF — minimized function.

NOMENCLATURE
€, € — accuracy of method;
f (x) — minimized function;
G =[a, b] — uncertainty interval;
a, b, a, p — parameters of uncertainty interval;
x — abscissa of the minimum of function f (x);
X1, X2, X3, X4 — points of dichotomy;
h — ratio of divide;
u; — current extreme point of the interval;
i — number of current extreme point;
p (i) = x + ie calculating dichotomy point;
ki, ko, Kk, Ky, K, - speed of methods;
Eds, Md, Y, Mg — algorithm names.

INTRODUCTION

Minimizing the function of one variable is the
simplest type of optimization problem. However, it
occupies an important place in the development and
practical application of mathematical methods for their
solution, including numerical methods [1-5]. This is due
to the fact that only with the help of numerical methods
many engineering and economic tasks can be solved, not
only with one-parameter optimization, but also with more
complex multiparameter problems.
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Unimodal functions are subjected to conditional
minimization procedures in the practice of one-
dimensional optimization.

There are various definitions of functions of this class,
therefore we will adhere to the definition [2-3,6-10,14],
according to which the unimodal is called the function f
(x) defined on the interval [a, b] if the numbers o and
exist, and
a<a<p<b,suchas:

1) if a <a, then the function f (xX) monotonically decreases
on the interval [a, of;
2) if B < b, then the function f (x) monotonically increases
on the segment [B, b];
3) on the interval [a, B], the function f (x) is constant and
reaches its minimum.

The main requirements that apply to numerical
methods of one-dimensional minimization are their
reliability and acceptable performance. It is believed that
the smaller the calculation of the minimized function is
required for the method to achieve the result, the more
effective it is and the higher its speed.

1 PROBLEM STATEMENT
The method of economical dichotomous search is
designed to find the abscissa x of the minimum of the
unimodal function f (x) on the interval G = [a, b] with an
accuracy of ¢.
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2 REVIEW OF THE LITERATURE

Three methods for eliminating segments are known:
the golden section search, the Fibonacci number method
and the dichotomous search, corresponding these
requirements [4-6, 8, 12-17, 22]. The first two methods
have approximately the same speed, so in practice they
usually use GSS, which is characterized by simplicity. It
is believed that the DS has a significantly lower speed, so
it almost does not find practical application.

The reason for the reduced speed of the DS is that,
although the method narrows the uncertainty segment
about twice for one iteration, and the GSS is only about
1.62 times, the first requires two calculations of the MF,
while the second, not counting the first iteration, requires
only one of its calculations. As a result, GSS has a higher
speed.

In the scientific literature there are no clearly
expressed conclusions about the unpromising DS, because
it is assumed that it can be improved. In this sense, the
following general wish of specialists is characteristic: “A
more thoughtful approach to the process of finding the
minimum point allowed saving on the number of calls to
the function calculation. However, in the method of
dichotomy there is a feature that allows you to build more
efficient algorithms. At each iteration, it is necessary to
calculate the value of the function at two new points. If
we succeed in constructing an algorithm so that each time
one of these points coincides with one of the similar
points from the previous iteration, it would allow at each
iteration to calculate the value of the function only at one
new point and thereby turn to even less function
calculation” [7, 9, 17-18, 23].

Similar points of view prevail in many works on
numerical minimization methods, including fundamental
publications of well-known and authoritative specialists,
including world-famous scientists [1-10]. However,
attempts to improve DS to a competitive level based on
the implementation of the expressed idea or otherwise (for
example, [11, 19, 21, 23]) have so far failed.

The dichotomy method is computationally redundant
in the sense that there is at least a theoretical possibility of
reducing the number of calls to the MF to solve the above
problems with the required accuracy.

The purpose of this article is to study the possibility of
increasing the speed of DS to a competitive level by
eliminating its computational redundancy. The method in
which redundant calculations of MF are excluded is given
the name of the economical dichotomous search.

3 MATERIALS AND METHODS

The method is based on DS. Its essence is as follows.
The method is based on DS [2, 12, 14, 20]. Its essence is
as follows. Let on the current iteration of the DS the
abscissas of the dichotomy x; = X - €, X, = X + £ and the
corresponding values of the function f (x;) and f (x,) are
calculated and let f(x;) > f(x,), as shown in Fig. 1.
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Figure 1 — Calculation scheme of EDS

In this case, the DS would require at the next iteration
the computation of the MF at similar points xs and X,.
However, before we calculate the MF at the point X3
closest to x,. If f (x3) < f (xp), as shown in Fig. 1, the
calculation of f (x4) is redundant, because, based on the
unimodality property of the MF, it is possible without the
calculation of f (x,) to establish that f (x3) < f (X4), and
immediately reduce the uncertainty interval by changing
the abscissa b and completing iteration. This circumstance
indicates the possibility of reducing the number of
calculations of the MF.

The reasoning is similar for the mirror situation, when
f(x1) < f(x2).

In order to confirm the stated idea and to evaluate the
practical availability of the EDS, algorithms and program
code in the Delphi language were developed.

1
( Eds@abehfxn) )
z \
ul a .: b.
n:=0; i:= -1; Mg(0)
3 @ No
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Mg(1)
-« 5 .~
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¢ |

( End >

Figure 2 — Block diagram of the Eds algorithm

The block diagram of the Eds algorithm that
implements the method is shown in Fig. 2
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The input parameters of the algorithm are: a, b - the
left and right borders of the G segment, respectively, e is
accuracy of determining the abscissa of extremum, h is
the coefficient used to divide the current uncertainty
segment in a given ratio, f is the name of the MF. Output
parameters: X is the abscissa of the minimum of the MF, n
is the counter of the number of calculations of the MF,
which determines the speed of the method.

The Eds algorithm uses internal auxiliary algorithms
(not shown in Fig. 2):

1) Md - abscissa calculations x = u; + h (u_; — u;) dividing
the uncertainty segment in a given relation, where i is the

index of the direction of the iteration (i = -1 is the
movement to the left boundary of the segment, i =1 to its
right boundary),

2) Mg - perform actions on the current iteration (Fig. 3).
During the initialization of the computational process in
block 2 of the Med algorithm, the elements of the array u
are assigned the values of the corresponding boundaries
of the segment G, the counter n is reset and the direction i
is set. Then, using the Mg algorithm, the first iteration of
the Med algorithm is performed.

1
(. Mg) )

> |
Md; Y(i)

o | ji=ijug=pG)
10 ‘

< End >

Figure 3— Block diagram of the Mg algorithm

Blocks 3 and 4 form a loop of iterations implemented
by the Mg algorithm. In block 5, the found solution x is
refined by referring to the Md algorithm.

The block diagram of the auxiliary Mg algorithm is
shown in Fig. 3. It uses internal algorithms (not shown in
Fig. 3):

1) calculating p (i) = x + ie the abscissa of the dichotomy
point,
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2) Y - computations of the ordinate v; = f (p(i)) of the point
of dichotomy and update n.

The Mg algorithm contains the input parameter b of
the logical type. With a false value of the parameter (0),
the first iteration of the Med algorithm is performed using
the dichotomy method, and with the true value (1),
subsequent iterations with the control of calculations
using the economical dichotomous search.

As a result of these improvements, the new method
should speed up the procedure for solving the problem of
finding a minimum of MF.

4 EXPERIMENTS

To assess the efficiency and effectiveness of the EDS,
a comparative computational experiment was conducted
using examples of solving dozens of optimization
problems for unimodal functions of various types:
smooth, gentle, slowly changing, piecewise, monotonic.

The calculations were carried out for £ = 10° using
variables and constants of arithmetic type supporting 19-
20 significant digits.

The GSS and DS were used as control methods [3—
11].

An example of one of the experimental functions is
shown in Fig. 4. The function has a minimum at the point
x = 1.24955.

y /
16

A /
BN /
BN

N

0.5 1 15 X

Figure 4 — Graph of the function
f(x) =15exp(—x*)+2(x* —x+1)2

The criteria for evaluating the speed of the methods
were taken as the number of calculations of the MF: k - by
EDS, k; - by GSS, k, - by DS. We studied the relative
values of K; = k; / k and K, = k, / k - the speed of the GSS
and DS reduced to the EDS, respectively.

As a result of the experiments, it was established that
the boundaries of the segment G have a significant effect
on the speed of the method under study. At the same time,
depending on the values of the h parameter, the EDS in
comparison with the GSS showed both the best and the
worst results.
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To get an answer to the question, which of these two
methods is more effective, a statistical calculation was
carried out. At the same time, the effectiveness of EDS in
relation to DS was studied. To do this, for a fixed value of
h, two sufficiently wide intervals were taken — to the left
and right of the extremum point, then, randomly,
combinations of the values of boundaries a and b were
selected from them and calculations were performed for
m combinations of the values of these parameters. For
MF, presented in Fig. 4, intervals were selected [0.0; 1.1]
for a and [1.3; 2.5] for b, the number of experiments m =
500.

Graphs of the characteristics of K; and K, on the
parameter h for this experiment are presented in Fig. 5.

It is seen that the dependencies are extreme. At the
same time, their highest values fall on the range h <
[0.25; 0.40]. The highest values of these characteristics
are K; = 1.31 and K, = 1.70, that is, at optimal values of h,
the EDS in speed is on average much more than GSS and
DS, respectively.

Calculations showed that at h = 0.5, which
corresponds to the half-division method, in 476 (95%)
experiments, the EDS showed the same or best results
with the GSS, and the best results in 430 (86%)
experiments. However, already at h = 0.4, similar
indicators improved significantly and amounted to 498
(99%) and 496 (99%) MF calculations, respectively.
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Figure 5 — Graphs of relative performance of methods

In absolute terms, this means that if GSS and DS to
calculate the extremum, on average, requires k; = 28 and
k, = 36 calculations of MF, respectively, then the EDS
finds an average solution for k = 21 of its calculations.

5 RESULTS
Experiments have shown that the EDS has a reduced
response rate while minimizing monotonic functions.
However, this type of function is not typical for
optimization problems, and, therefore, this fact is not
fatal. However, this disadvantage of the method can be
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overcome by a simple algorithm upgrade. If, with several
consecutive calculations of the MF, there is a tendency
towards monotony of the current results, then it is
sufficient to calculate the MF at the extreme point of the
uncertainty interval and at the point separated from it by
g, and if it turns out that these points also fit into the
monotonicity forecast, then the function is indeed
monotonic.

6 DISCUSSION

Thus, the hypothesis about the computational
redundancy of the classical dichotomy method used to
minimize unimodal functions expressed in the paper has
found its theoretical and experimental substantiation.

It has been established that the EDS works at least 1.5
times faster than its classic forerunner. This means that,
on average, out of three calculations of the MF by DS, at
least one is redundant.

The method is quite sensitive to the parameters of the
segment of uncertainty and with respect to the GSS it can
work both faster and slower than it, however, with h h e
[0.25; 0.40] EDS usually requires fewer MF calculations
to achieve a result.

The general conclusion is that, while minimizing the
extremes on the interval of uncertainty of the MF
compared to the GSS and the DS, in the average statistical
level, the EDS will have approximately 1.3 and 1.7 times
faster response, respectively. In other words, when
solving such problems the EDS works many times faster
than GSS, when GSS works faster than classic DS.

CONCLUSIONS

This conclusion makes it possible to take a critical
look at the well-established notion that the dichotomy
method is the worst of the cut-off methods. Taking into
account the obtained results, the economical method of
dichotomy is noticeably superior in speed to the best of
them - the golden section method and can reasonably
claim to be a leader in this family of methods.

Thus, having certain advantages over the golden
section search, the economical dichotomous search seems
preferable in practical use.
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VIIK: 519.67
MUHUAMMUBALIMS ®YHKIUAN OJJHOM MEPEMEHHOM
METOJIOM SKOHOMHOM JUXOTOMUHA

Konnsinko B. A. — nokrop TexH. Hayk, npodeccop, [lonurexanueckuit uHcTUTYT, CHOMPCKUIA (enepanbHbIi YHHUBEPCHUTET,
Kpacnospck, Poccust.

AHHOTALMUA

AKTyaJbHOCTb. BrlIBHHYTa HIes YCTpaHEHHs BBIYHCIHTENHFHONH H30BITOYHOCTH METOJA IUXOTOMHH, HCIOJIB3YEeMOTO IUIS
YCIOBHOW MHUHHUMH3AIMA YHUMOJAJIBHBIX (DYHKIMH, U HAa ee OCHOBe C(HOPMYJIMPOBAH MOXOJA K CO3MaHUI0 Ooyiee 3(PPEKTUBHOTO
MeTo/]a ONTUMHM3AIMHU QYHKIMH OTHOI IepeMEHHO.

Heanrw nanHOW pabOThI SBISIETCS pa3pabOTKa METOMUKH YCTPAHCHUS BBIYHUCIUTEIBHON M30BITOYHOCTH METOMAA AUXOTOMHU U
CO3/IaHHs YHUCICHHOTO METOJa IOBBINICHHOTO OBICTPONCHCTBYSI, Ha3BaHHOTO METOJOM SKOHOMHOW TUXOTOMHH. PaspaboTke
MOJUTEKAT aJTOPUTM H POTPaMMHBIN KO, PEaTU3YIOIINE METO/I.

Meton. B ocHOBe MeTO#a JIEKUT CBOWCTBO YHHMOJAIBHOCTH MUHHMH3HPYEMOH (YHKIUH, KOTOPOE TPH OMpEeAeTIeHHBIX
YCIOBHSAX TO3BOJIAET COKPATHTh KOJMYECTBO BBIYUCICHUN ONTHMHU3UPYEMOW (YHKIMH, YTO TIO3BOJISIET TOBBICUTH CKOPOCTH
SKOHOMHUYHOT'O TIOMCKA METOOM JUXOTOMUHU.

PesyabTaThl. [IpuBeneHHBIE pe3ynbTaThl BBIYMCIUTENBHOTO OKCIIEPUMEHTA IOKA3ajdM, 4YTO MO OBICTPOAEHCTBHIO,
OIpEAeIIeMOMY KOJMYECTBOM BBIYMCICHUH MHHHUMHU3UpPYeMOW (GYHKIMHM, 3KOHOMHYHBIH MeToJ] He MeHee 4deM B 1,5 pasa
3¢ GeKTUBHEE KIACCHYECKOr0 METOAa AMXOTOMHH. DTO O3HAYaeT, YTO B CPEIHEM M3 TPEX BBIYHCICHHI MHUHMMH3UPOBAHHOU
(GYHKIUH C HCTIONBb30BAHHEM METOJ]d JUXOTOMHH OJUH SBJIAETCS M30BITOUYHBIM. [10 CpaBHEHHIO C MOMCKOM IO METOXY 30JI0TOTO
CEUeHHs, KOTOPBIA SBIISETCS CaMbIM OBICTPBIM METOJOM B CEMEWCTBE METOJOB OTCEUCHHUS OTPE3KOB, U METOJOM JUXOTOMHHU B
CPEIHECTATHCTHYECKOM OTHOIIEHHH YKOHOMHBII METO/ AaeT mpuMepHo B 1,3 u 1,7 pasa Goinee OBICTPHII MOUCK, COOTBETCTBEHHO.

BuiBoasl. [loydeHHBIE pe3yNbTaThl MO3BOJSIOT BBIBOJ O TOM, YTO TNPEUIOKEHHBIH SKOHOMHBIH METON AMXOTOMHH MOXET
000CHOBaHHO TIPETEHIOBATH Ha JIUIEPCTBO B CEMEWCTBE METOIOB OTIECIICHUS OTPE3KOB.

KJIFOYEBBIE CJIOBA: yHumonanmbHas (GYHKIHMS, METOA JAWXOTOMHH, METOZ 30J0TOTO CEYeHHs, METOJ 3KOHOMHOII
JTUXOTOMHUH, MOHOTOHHAsI pyHKIIHS, OBICTPOICHICTBUE METOIA.
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