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Subharmonic Functions on Complex Hyperplanes of C”
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In this paper is considered a class of m—wsh functions defined with relation dd°u A (dd°|z|*)™™™ > 0,
and is studied some properties of polar sets for this class.
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Introduction

Subharmonic (sh) and plurisubharmonic (psh) functions play the main role in theory of
functions of several real and complex variables. In the space C* ~ R?" they defining by the
conditions

dd®u A (dd° 2|~ >0

or

respectively. Here, as usual d = 0 + 0, d° = ——.

In this paper we consider the class of m-weak subharmonic (m—wsh) functions, defined by
relation

ddu A (dd®|z)*)"™™ > 0. (1)

As we see below this class wider than the class of psh functions, but strongly contains in the class
of sh functions. Moreover, in case, m = 1 the class of 1 — wsh functions coincide with class of sh
functions and in case m = n the class of n—wsh functions coincide with class of psh functions.

In studying the class of m—wsh functions we essentially use the elementary theory of differen-
tial forms and currents, also methods of pluripotential theory. In general case, when wu isn’t twice
differentiable, the relation (1) is interpretated in the sence of currents. Therefore in section 1 we
shortly give fundamental conceptions from the theory of currents. In section 2 we give general
definition of the m —wsh functions and some their simple properties. Section 3 devoted to the
muw-polar set and its characteristics.

1. Positive defined differential forms and currents

As usual, the space of differential forms of bidegree (p,p) in a domain D C C" is denote by
Fp) = ZPP)(D). The differential form in view

-\ P
w= (;) (dty A dly) A ... A (dE, A dE,)
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is called main positive form of bidegree (p, p), 0 < p < n, where ¢; = a;, 21 + ...+ a;, z, are linear
functions in the space C", j = 1,2,...,p. Linear combination of such form w,

N
W(P;P) — qu(z)wq, fq(z) S C(D), fq(Z) = 07
q=1

is called strongly positive differential form of bidegree (p,p) in the domain D C C™. Thus,
positive differential form of bidegree (0,0) or bidegree (n,n) give to us positive scalar function
w0 = f(z) >0 or

. n
W™ = <;) F(2)der AdZy A oo Adzn AdZ, = f(2)dV,  f(2) >0,
where dV — Lebesgue’s element of volume in the space C™ ~ R?".

The differential forms w®P) € .ZPP) of bidegree (p, p) is called weakly positive if wPP) A is
positive form of bidegree (n,n) for any strongly positive form o € .Z("~P"=P) Strongly positive
form is at the same time weakly positive, because exterior product of two strongly positive form
are positive.

In the cases p = 0,1,n—1,n weakly and strongly positive are coincide. But, in cases 1 < p <
n — 1 not every weakly positive differential form is strongly positive.

Definition 1. Linear continuous functional T'(w) in the space of main differential form
F@P) = p®r) (D) = {w e PP (D) N C>®(D) : suppw CC D}
is called current of bidegree (n — p,n —p) = (q,q)

The current T is called strongly (weakly) positive, if T'(w) > 0 for any weakly (strongly)
positive form w € Z®P), Tt is clear, that for ¢ = 0,1,n—1,n weakly positivity of currents also
coincide with strongly positivity.

It is known, that positive currents are currents of measure type, i.e. differential forms,
coefficients which are Borel’s measures. More about the theory of currents see [1-4].

An impotent example of current of bidegree (p,p) in the pluripotential theory is current
dd®u A (dd°|z|?)P~1, 1 < p < n, defined as

-1 -1
ddeu n (dde |z\2)p (w) = /u(ddc|z|2)p Addw , w € FO=pn=P) (D), 2)

where u € L}, (D) are fixed functions. It is easy to proof that the current ddu A (dd¢|z|*)P~" is
strongly positive if and only if, when it is weakly positive.

2. m-—wsh functions

Definition 2. A function u(z) € L}, (D), given in a domain D C C" is called m —wsh function

loc
(subharmonic function on (n —m + 1)—dimensional complex surfaces, 1 < m < n) in D if:
1) it is upper semicontinuous in D, i.e.

lim u(z) = lim sup u(z) < u(z");
z—20 e—0 B(zo,s)

2) the current dd°u A (dd®|z|?|)"~™ >0 in D, i.e.

ddu A (dd€|z|*)" " (w) = [ u(dd®|z[*)""" Addw >0, Ywe FMm=tm=b ¢ >0,
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The class of such functions is denoted by m—wsh(D). For convenience, the function u = —oo
also included into the m—wsh(D) class. A letter "w" (weak) in denotation of class is put in
order to differ this class from the known class of m —sh functions. m —wsh function in the
domain D C C" at the same time is subharmonic in the D C R?". Therefore, all properties of
subharmonic functions is true for m—wsh functions.

We provide a following properties of m—wsh function, which we will use further.

1) Linear combination of m—wsh functions with nonnegative coefficients are m—wsh functions,
ie.

uj(z) e m —wsh(D), a; € Ry (j=1,2,..,N) =

aruq(2) + agua(z) + ... + ayun(z) € m—wsh(D).

2) A limit of monotonically decreasing sequences of m —wsh functions is m—wsh function,

ie.
wi(z) e m—wsh(D), u;(2) = upia(s), (i=12.) =
lim u;(2) € m—wsh(D).
j—o0

3) Uniformly convergence of sequence of m—wsh functions is converge to m—wsh function,
ie. if uj(2) € m—wsh(D), (j =1,2,...), uj(2) = u(z), then u(z) € m—wsh(D).

4) (mazimum principle). Let a function u(z) € m—wsh(D) and in some point 20 € D it
reaches its maximum, i.e.

u(2°) = sup u(z). (3)
zeD

Then u(z) = const.

5) If u(z) € m—wsh(D), then a convolution u;(z) = uxK,,;(z—w) also belongs to m—wsh(D),
and u;(z) | u(z) at j — oo.

Here K,/j(x) = j"K (jr) and K is standard infinity differentiable kernel, with carrier
suppK C B(0,1) and

K (x)dx = / K (x)dx = 1.
R7 B(0,1)

The proof of these properties implies from analogous properties of subharmonic functions on
the plane and we down them (in details see [5]).

A following theorem gives us geometric character of m—wsh functions.

Theorem 1. Upper semi continuous function u, given in the domain D C C", is m—wsh if
and only if for any (n — m + 1)—dimensional complex surface IT1 C C™ restriction

ulg € sh(ILN D). (4)

Proof.  Necessity. Let u € m — wsh(D). According to property 5 we approxi-
mate u, with infinity differentiable functions u; | w, u; € m—wsh(D) N C>*(D). We
fix a complex plane II C C”, dim¢Il = n — m + 1, and we take an orthonormal ba-
sis &1,y €nm+1 on II. Then (dd°|z|*)"~™|n = (dd°[¢]*)" ™ and consequently, dd®u; A
(dde|z*)"=™ |n = ddu; | A (dd€[€|*)"~™ . Since, dd®u; A (dd®|z|?)"~™ is positive differential
form of bidegree (n —m + 1,n — m + 1), then the restriction ddu; A (dd®|z|*)"~™ |n > 0. Hence
ddu; | A (dd®€]?)"~™ > 0 and it means, that u; [ € sh(ILN D). Since, u; |n | u|n at j — oo,
then u |1 € sh(D).

Sufficiency. First we formulate a number of properties of upper semi continuous function
u(z), satisfying the condition (4), by them we will proof of sufficiency of theorem.

1) Finite sum ajuy + ... + agpup with positive coefficients aq, ..., > 0 will satisfy the
condition (4), if and only if wy, ..., ux satisfy the condition (4).
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2) Decreasing sequence or uniformly convergence sequence of functions {u;}, satisfying the
condition (4) converges to function of type (4).

3) The function u, satisfying the condition (4) either u = —oo0, or locally summable function,
ie. ue L (D).

Indeed, since u is upper semicontinuous, then it locally bounded from above. Therefore,
without lost of generality we may assume, that u < 0 in D. Let in some point 20 = 0 the
function u(0) # —oco. Then for any fixed surface II 5 0, dimII = n — m + 1, the restriction w |r
is subharmonic in D NII. Consequently,

1

u(0) < —/ w | dVm, (5)
Voem1m™ ™™ g0 mnm

where B(0,7) = {||2]| < r} is a ball, dV| is an element of volume on II and V;,_,,,41 is a volume
of unit ball in IT ~ R*~™*1. Hence, for any surface I > 0, dim IT = n—m+1, the restriction u |rg
has uniformly bounded integrals on II N B(0,r). By the Fubini theorem and according to (5) it

follows that, —oo < / u(z)dz < 0. It means, that u locally integrable in a neighbourhood
B(0,r)

of origin and it follows that the function u integrable on any Ball B(z",r), 2° € D, r > 0.

Remark 1. Here we apply the Fubini theorem on collection of complex surfaces passing through

origin. As it is known they generate Grassman’s manifold M,, ,_,4+1. But to prove locally

integrability of u we can apply the theorem of Fubini for all complex surfaces II passing through

some fixed surface L 3 0, dim L = n — m. The set of such II will generate a projective space

P™=1 and to proof u € L}, .(D) we can use a following convenient formula of Fubini

/ u(z)dv:/ wmfl/ ula(2) dV i, (6)
B(0,r) ITepm—1 B(0,r)NIL

where w is standard form of Fubini-Shtudi of projective space.

4) If u satisfy the condition (4), then the convolution u;(z) = u* K /;(z —w) also satisfy this
condition and u;(z) | u(z) at j — oo.

It follows from obviously relation

wx Kz —w) = j”/ w(w)K (i(z — w))dw = / " (z + ;”) K (w)dw. (7)

Here, the first integral represents infinity differentiable function, second integral satisfies the
condution (4). Convergence of u;(z) | u(z) follows from (6).

Now we can complete the proof of theoreml. According to property 4) we construct ap-
proximation wu;(z) | u(z). Since, u; € C* and u;|n are subharmonic on any complex sur-
face I, dimc Il = n — m + 1, then the restriction dd®u; A (dd®|z[*)"~™|q > 0. It means,
that the differential form dd®u; A (dd®|z|?)"~™ > 0. From convergence of u;(z) | u(z) follows
dd®u A (dd®|z|*)"~™ > 0 in the sence of currents, and consequently, u € m—wsh(D). The proof
of theoreml is complete. O

3. muw-polar sets

The polar and pluripolar sets are key notions of the potential theory (see [3,6]). Therefore,
it is important the study of the mw-polar sets for the class of msh-functions.

Definition 3. By analogue polar sets, a set E C D C C" is called mw-polar in D, if there exist
a function u(z) € m—wsh(D), u(z)# — oo, such that u|g = — oo.
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From inclusion m —wsh(D) C sh(D) it is follows, that each mw-polar set is polar. In
partiqular, the Hausdorf measure Hy,,_o1.(EF) = 0 Ve > 0, and consequently, Lebesgue measure
of mw-polar set E also is zero.

From embedding psh(D) C m—wsh(D) follows, that every pluripolar set is mw-polar. We
provide a nontrivial example of mw-polar set in the space C3.

Example 1. We consider a function

u=In[(z; + 21)2 + (22 + 22)2 + (23 + 23)2] =In|z+ 2|2 =In (x% + x% + x%) +In4,

where z; = x; +iy;,7 = 1,2,3.

It is clear u is not 3 — wsh in D, i.e. it is not psh in D. It is not difficult to prove that it is
subharmonic, i.e. Au > 0. We show that it is 2 —wsh function in C3. Thereby we have, that real
3-dimentional surface R?(x {z eC?:Imz = 0} is 2w-polar in C3. Taking direct calculation.

i [ 02 0?
= i Y le A dgl + Y

w = (ddcu) N dd° |Z‘2 m 8251652

le AN dig-’-

82 2 2 2

0 u 0*u 0*u
dzy N\ dZ ———dz NdZ ———dzy NdZ ———dz ANdz
+621823 1 %+ 029071 =2 a1t 029079 =2 22+ 029073 2 st

2 2 2

0“u o0°u
dzs A d3 dzs Ad dzs AdZs| A
+azga 5 B NOE g s AR Ndzy o a7 23]

9 1 2 2 3 3 | 9 a, a 9, 1 1 2 2

0%u N 0%u
029079 02307Z3

( 0%u 0%u

dzy NdzZy Ndzz Ndz
021071 + 823823> A1 A1 =3 %3+ (

>d2’2/\d52/\d23/\d23+
+ Fu dz1 Ndzy Ndza N dzZs + Pu dzi Ndzy Ndzs N\ dzy + Fu dzy Ndzz N\ dzg N\ dZa+

z
92207 1 1 2 3 92307 1 1 3 2 92107 1 3 2 2
92 2 2

3 > ~ _ 0~u
+8z3821 dzz NdZzZy N dza N dZo +821822 dzy Ndza ANdzg A\ dz3 + 02205 s——Fdze Adzy ANdzz A dz3]

Thus, for any form v = %dﬁ A dl of bidegree (1,1) where df = aydz; + a2dza + asdzs
from v = %dé Adl = % (|a1\2dz1 Adzi+ araadzy A dZy + aiasdz A dZs + asardes A dZ+

+ |(12|2 dZQ N d,§2 + CLQ(_lgdZQ A dzg + agdld23 A d,?l + angd,Zg A d22 + |a3|2 ng A d23>, we get

i 9 0%u 0%u _ _ _
VAw= 5 {|a1| (322322 + 92307, dz1 ANdzi Ndzg ANdZo A dzs N\ dzZs +
2 2

u_ dz1 Ndzay Ndzog NdzZy Ndzs A\ dzZs + al@gaiu_dzl ANdzz Ndzs ANdzy N dze N\ dzZa+
029071 023071

U gy Ay Adz Az s |0t O
210%9 2 ! ! 2 3 3 2 821821 62’3823

“+aias

“+asaq 9 ] dziNdzZy NdzoNdZo Ndzg NdZ3+
2 2

u u
———dzo ANdzZ3 Ndzy NdzZy Ndzg N\ dZ a
023079 2 %3 1 A1 *3 72+ asly 021073

2 ’ ’
" ) ) ~ o O0%u 0%u
dzzAdzaAdz1 Adzi AdzaAd 921071 | 02007
= 23AdZaNdz1 AdZ1 Ndza AdZ3+|as| {63’1821 + 02907

“+asas

dzz NdzZy Ndzy NdzZs ANdzo N\ dzZs+

“+asaz :| le/\dzl/\dZQ/\dzg/\dZ;g/\ng:
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a? 0%u N 0%u + lagf? 0%u N 0%u + las? 0%u N 0%u

= a a a —
! 029079 023073 2 021071 023073 3 021071 029079
0%u . 0%u Cwd 0%u o 0%u Cwed 0%u i 0%u

0200721 1% 023071 20 02107 208 02307 351 021073 352 029073

—a1a3

X %dzl A dzl A %dZQ A dZQ A %dz:; A ng = Ot(Z)%le A dfl A %dZQ A dfg A %dz;:, A dfg,

where

o (2|24 27 —4(za+ 2)? | 2|24 2> — 4(23 + 23)2
°) =l ( 2+ 2 ! 2+ 2 !

s (22427 =4z +21)? | 2|2+ 2> — 4A(z3 + 23)2
* laz| < 2 +2)* - 12+ 2| -

s (22427 =4z +21)? | 2|24 2] — 420 + 22)?
lal < 12+ 2| * 2+ z* -

Aa+a)(ntm) | 534(zl + 21) (23 + 23)

+aias

|2+ 2[* |z + 2[*
4(z1 + z1) (29 + Z 4(z9 + Z9) (23 + Z
g3y (21 1)(_31 2) 423 (22 2)(_::’l 3)
|z + Z| |z + z|
4(z1 + z1)(23 + Z A(z9 + Z9) (25 + Z
sy (21 1)(_?:1 3) i (22 2)(_?:L 3) _
|z + Z| |z + Z|

4 _ _ _ _ _ _
=—7 <|0L1|2 (214 21) + laz|? (22 + 22)% + |as|® (23 + 23)? + ar1@a(21 + 21) (22 + 22)+

|2 + 2|
+a1d3(2§1 + 21)(2’3 + 53) + a2d1(22 + 52)(,21 + 51) + a2@3(22 + 52)(2:3 + 23)+
+a361(23 + 53)(21 + 21) + a3d2(22 + 22)(2:3 + 23)) =
= ——lar(z1 + 21) + az(z2 + Z2) + az(z3 + 53)|2 2 0.
|z + 2|

Since, f-arbitrary linear function, then dd“u A dd®|z|? > 0, in C3\R3(x) i.e. u is 2 — wsh function
beyond of points R3(x). In points R3(z) function u |R3(m) = —oo. Consequently, it will be
automatically 2 — wsh in these sense.

Definition 4. A domain D C C" is called mw-convez, if there exist p(z) € m—wsh(D) such
that 1irgD p(z) = 400, and it called mw-regular, if there exist p(z) € m—wsh(D) : p(z) < 0 such
Zz—
that i =0.
ol plz) =0
Next two theorems are analogue of corresponding theorems of classical and complex theory
of potential (see for example [6,7]).
Theorem 2. Countable union of mw-polar sets is mw-polar, i.e. if E; C D are mw-polar, then

(oo}
E = | E; is also mw-polar.

j=1
Theorem 3. Let D C C" be mw-convex domain and subset E C D such that for any compact
subdomain G CC D the set E N G mw-polar in G. Then E is mw-polar in D. Moreover,
if D-mw is regular, then there exist a function u(z) € m — wsh(D), ulp < 0, u# — 0o, but
ulp = —o0.
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Proofs of these theorem close to eachother. Therefore we provide only proof of the Theorem 3.
Since D is mw— convex domain, then a function p(z) = —1Inp(z,0D) is m — wsh(D) and

lirgD p(z) = +o0. Hence, D, = {z € D : p(z) < r} CC D for any r > 0. We fix some point

a € D and denote by G; connected component of the set D, , enclosed a point a. Then there
exist a number 7; > p(a) such that

Gj CcC Gj+1, U Gj =D. (8)
j=1

Since E N Gj41 is mw-polar, then there exist a functions v;(z) € m—wsh(G;12) such that
v;# — 00, but v; |EQGH2 = —o00. As the set {v; = —oo} has a Lebesgue measure zero, then the

o0
set |J {v; = —oc} also has a Lebesgue measure zero. Consequently, there is a point 2 € Gy
j=1
such that v;(2°) # —oo for all j € N.
1 wi(z)—C,
Putting C; = max v;(2), 0;(2) = —— - 24—
gLj 2€Gos i(2), 05(2) 2 v (20— C;
a; > 0 so big, that u ’G_j < —1. Then 75(z) ‘G]._l < 0 and u; ‘BGj+1 = 0. Therefore, it is not
difficult to proof, that

and u;(z) = a;j(p(z) — rj+1), where

() = max{v;(z),u;(2)}, for z € Gjt1,
w;(2) = { uj(z), for z ¢ Gt )

is mw-subharmonic in D (5 = 1,2, ...).

o)
Then the sum w(z) = Y w;(z) € m—wsh(D), and w (2°) = —1,w|g = —oo. It follows that

j=1

FE is mw-polar in D.

In the case, when D = {p(z) < 0} is mw-regular, i.e. p(z) € m—wsh (D) : p(z) < 0 and
1i%1Dp(z) =0,asaset D, ={z€9dD: p(z) < —r} CC D,r > 0, and as a function u; we
take u;(z) = a;j[p(z) + rj41]. Here the sequence r; | 0 such, that the connected component G;
of D, satisfy the condition (8) and the a; a such, that u |G]. < —1. Further, we construe w; as

in (9) and we put w(z) = > w;(z). Then w will be at first negative m—wsh function in D and

Jj=1
secondly w |p = —o0. O
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Cybrapmonndyeckne (pyHKIIUA HA KOMILJIEKCHBIX
runepiiockoctax C"

Baxpom U. A6aynnaes

B dannoti cmamwve paccmomper kaacc m — wsh Pynryul, onpedessemvix coommowenuem dd uN
A 2[H)™™™ > 0, u usyuens HeKOMOopbIe CEOLCMEA NOAAPHBLT MHOICECTNE U3 IMNO20 KAACCA.

Karoueswvie caosa: m — wsh Gynkyuu, mw-nosapHoe MHOAHCECTNEO, MW-BLINYKAASL 004ACTVD, MW-
peyAAPHaA 00AaCMD.
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